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transition bubble wall within the symmetric phase. In particular, we generalize existing

approaches to distinguish between chemical potentials of particles and their superpartners.

This allows us to test the assumption of superequilibrium (equal chemical potentials for

particles and sparticles) that has usually been made in earlier studies. We show that in

the Minimal Supersymmetric Standard Model, superequilibrium is generically maintained

— even in the absence of fast supergauge interactions — due to the presence of Yukawa

interactions. We provide both analytic arguments as well as illustrative numerical ex-

amples. We also extend the latter to regions where analytical approximations are not

available since down-type Yukawa couplings or supergauge interactions only incompletely

equilibrate. We further comment on cases of broken superequilibrium wherein a heavy su-

perpartner decouples from the electroweak plasma, causing a kinematic bottleneck in the

chain of equilibrating reactions. Such situations may be relevant for baryogenesis within

extensions of the MSSM. We also provide a compendium of inputs required to characterize

the symmetric phase transport dynamics.

Keywords: Cosmology of Theories beyond the SM, Supersymmetric Standard Model

ArXiv ePrint: 0908.2187

c© SISSA 2009 doi:10.1088/1126-6708/2009/12/067

mailto:danielchung@wisc.edu
mailto:bjorn@physics.wisc.edu
mailto:mjrm@physics.wisc.edu
mailto:tulin@caltech.edu
http://arxiv.org/abs/0908.2187
http://dx.doi.org/10.1088/1126-6708/2009/12/067


J
H
E
P
1
2
(
2
0
0
9
)
0
6
7

Contents

1 Introduction 1

1.1 Existing approaches to diffusion 4

1.2 Supergauge interactions and diffusion 5

1.3 Outline of this paper 6

2 Diffusion transport equations 6

2.1 Three-body rates: general formalism 6

2.2 MSSM interaction Lagrangian 9

2.3 Supergauge equilibration rates 13

2.4 Yukawa, tri-scalar, and Higgs vev induced interactions 18

2.5 Four-body and off-shell contributions 19

2.6 Sources and relaxation terms 20

2.7 Thermal masses 21

2.8 Diffusion constants 21

2.9 Boltzmann equations 22

2.10 Thermal fermion propagators and particle/hole modes 24

3 Transport equations and YB: analytic study 26

3.1 Conditions for superequilibrium 27

3.2 Analytical approximation 30

4 Transport equations and YB: numerical results 33

4.1 Supergauge and Yukawa interactions in equilibrium 33

4.2 Dependence on tanβ 38

4.3 Absence of supergauge interactions 42

5 Conclusions 44

A Numerical methods 46

1 Introduction

Electroweak baryogenesis (EWB) remains one of the most attractive and testable scenarios

for explaining the baryon asymmetry of the universe (BAU). The BAU is characterized by

the baryon number-to-entropy density ratio YB ≡ nB/s, where nB is the baryon number

density and s is the entropy density. The value for YB obtained from analysis of light ele-

ment abundances in the context of Big Bang Nucleosynthesis (BBN) is consistent with the
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value extracted by the WMAP collaboration from acoustic peaks in the cosmic microwave

background anisotropy:

6.7 × 10−11 < YB < 9.2 × 10−11 (95% C.L.) BBN [1]

8.36 × 10−11 < YB < 9.32 × 10−11 (95% C.L.) CMB [1, 2].
(1.1)

As observed by Sakharov [3], a particle physics explanation for this tiny number, corre-

sponding to roughly five percent of the cosmic energy density, requires three ingredients

(assuming a matter-antimatter symmetric universe at the end of inflation): (1) violation of

baryon number, B; (2) violation of both C and CP symmetry; and (3) a departure from

thermal equilibrium.1

In EWB, these ingredients come into play if the scalar (Higgs) sector of the theory

gives rise to a strongly first order electroweak phase transition (EWPT) at temperatures

T ∼ 100 GeV. Such a phase transition proceeds via bubble nucleation, wherein regions of

broken electroweak symmetry emerge in a background of unbroken electroweak symmetry.

C and CP -violating interactions of fields near the bubble wall lead to the creation of

left-handed charge that is injected into the unbroken phase, where electroweak sphalerons

convert it into baryon number. The bubbles expand into regions of nB 6= 0, freezing it in

because sphaleron transitions are quenched in the bubble interiors. A strong first order

EWPT is required in order to sufficiently quench the sphalerons inside the bubble, thereby

preventing wash out of the captured baryon number density.

Although the Standard Model (SM) in principle contains all the necessary ingredients

for EWB, the effects of SM CP -violation are too suppressed to generate sufficient left-

handed charge during the process of electroweak symmetry-breaking. Moreover, the LEP

II lower bound on the mass of the SM Higgs boson, mh ≥ 114.4 GeV is too high to allow

for a strong first order EWPT.2 Consequently, EWB can be viable only in the presence

of new physics at the electroweak scale. In particular, augmenting the scalar sector of the

SM can lead to a strong first order EWPT consistent with a SM-like Higgs scalar that

is heavier than the direct search lower bound. The possibilities for doing so encompass

both supersymmetric and non-supersymmetric scenarios, and in either case, searches for

new scalars at the Large Hadron Collider could provide important tests (for recent work,

see refs. [5–11] and references therein). Similarly, the presence of new CP -violating in-

teractions, the effects of which are not suppressed by light quark Yukawa couplings and

small mixing angles as it is the case for the CKM mechanism [12], could lead to sufficient

left-handed charge generation during a first order EWPT. Experimental searches for the

permanent electric dipole moments (EDMs) of the electron, neutron and neutral atoms

with enhanced sensitivity could uncover the existence of such interactions [13–15]. In ad-

dition, even though other evidence for CP -violation may be provided by B-physics [16, 17]

(although not for the minimal field content of MSSM [18]), a direct measurement of the

parameters fixing the relevant CP -violating physics will most likely require a collider be-

yond LHC such as the ILC [18, 19]. In light of these prospective experimental searches

1This criterion can be evaded if CPT invariance is broken.
2Numerical studies indicate that in a SM universe, electroweak symmetry breaking occurs through a

smooth cross over rather than through a phase transition [4].
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for the ingredients needed for EWB, it is important to refine the theoretical apparatus for

relating their results to the baryon asymmetry.

The left-handed charge density, that biases weak sphaleron transitions and that is

therefore of central relevance for the computation of the baryon asymmetry, is given by

the sum of all charge densities of left-handed quarks and leptons of all generations,

nleft =

3∑

i=1

(qi + ℓi) . (1.2)

The number densities are understood to be the sum of both isospin components and of the

three colors for the quarks. Moreover, we use the word density as a short hand expression

for charge number density (the zero component of the vector current, which is the difference

of particle and antiparticle number densities), and denote the densities by the symbols

that also represent the particular particles. As outlined above, the left handed density gets

converted into a baryon density nB through weak sphaleron transitions. The following

formula describes baryon generation and washout ahead of the bubble wall [20]:

nB = −3
Γws

vw

0∫

−∞

dz nleft(z)e
15
4

Γws
vw

z , (1.3)

where vw is the bubble wall velocity and z is the spatial coordinate perpendicular to the

wall in the frame where the wall is at rest. Negative values of z correspond to the symmetric

electroweak phase (bubble exterior), positive values to the broken phase (bubble interior).

Because the weak sphaleron rate, Γws, is much slower than the rates for both the creation of

nleft and its diffusion ahead of the bubble wall, application of eq. (1.3) is usually decoupled

from the network of diffusion equations, a simplification that we also adapt here. Eq. (1.3)

underlines the essential need of accurate theoretical methods of determining nleft in order

to make quantitative predictions for YB.

The importance of diffusion for EWB has been emphasized in refs. [20–22]. Due to

scatterings with the thermal bath, the CP -violating density nleft is not only localized at

the bubble wall, but it is also transported to the region ahead of the bubble wall. There-

fore, there remains a larger amount of time for weak sphaleron processes to turn nleft into

the baryon asymmetry, before the it is captured by the bubble inside of which sphaleron

transitions are quenched.

The purpose of the present paper is twofold: First, we present a more detailed discus-

sion on the derivation of the diffusion equations and the computation of the interaction

rates that enter these. This supplements our recent publications [23, 24]. Second, we extend

the network of diffusion equations to distinguish between particle and sparticle chemical

potentials. In earlier publications (see refs. [20, 23, 24] and references therein), it has been

assumed that the chemical potentials for particles and their superpartners are identical, a

situation that we refer to as superequilibrium. Here, we provide numerical evidence that su-

perequilibrium holds in most regions of parameter space. On the other hand, the generaliza-

tion presented here also allows for a computation of the baryon asymmetry in parametric re-

gions where superequilibrium does not hold. As for the source of CP -violation, although we
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focus in this paper on the MSSM as an illustrative case, our methods can be applied to any

supersymmetric scenario (e.g., the “next-to-minimal” Supersymmetric Standard Model).

1.1 Existing approaches to diffusion

In order to compute the left-handed charge, we need to derive and solve a coupled set of

transport equations for the densities of particles that couple directly or indirectly to the

CP -violating sources [20, 21]:

∂µ j
µ
r = −

∑

s

Γrs ns + S��CP
r , (1.4)

where jµr is the current density for particle species r, Γrs are transport coefficients that

couple the evolution of species r to the number densities ns of other species s, and S��CP
r is

a CP -violating source term for the species r.

In earlier treatments on diffusion for EWB, it is usually assumed that the only relevant

Yukawa coupling is the one of the top quark, as it is much larger than Yukawa couplings

of the first generations but also much larger than third-generation couplings of down-type

quarks and leptons [20]. While we agree with the general framework for the diffusion equa-

tions and the strategies for analytical solutions that is described ref. [20] and followed in

most subsequent work, in two recent publications [23, 24], we have shown that the ratio

between the Yukawa couplings does not directly answer the question of their relevance.

Rather, the timescale associated with the interactions induced by these Yukawa couplings

has to be compared to the inverse diffusion length Γ−1
diff that is characteristic for the EWPT.

In supersymmetric scenarios, the Yukawa couplings of down-type fermions and their su-

perpartners grows with tan β, thereby enhancing the equilibration rate for these reactions

relative to diffusion. We find that for tan β >
∼ 5 (tan β >

∼ 15) interactions between bottom-

(τ -) particles and the Higgs sector can in general equilibrate on diffusion time-scales. This

observation induces important qualitative and quantitative changes to the description of

the diffusion process in EWBG:

• When bottom quark Yukawa couplings are in equilibrium, no net chemical potential

associated with the axial charge of left handed third generation fermions arises. As

a consequence, the production of densities of first generation quark densities through

strong sphaleron processes (thermal SU(3) instantons) is suppressed.

• The sign of the baryon asymmetry depends on the sparticle mass spectrum and on

tanβ, and it is therefore not uniquely given in terms of the CP -violating phase.

In particular, in parametric regions where τ -Yukawa couplings are negligible but

bottom-Yukawa interactions equilibrate, the sign changes according to whether the

right-handed sbottom-particle is heavier than the right handed stop or not.

• When also τ -Yukawa interactions are in equilibrium, there are substantial contribu-

tions from third generation leptons to nleft.

– 4 –
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1.2 Supergauge interactions and diffusion

The particular step towards a complete treatment of the diffusion dynamics in the symmet-

ric phase that we take in this paper is to generalize the diffusion equations to allow for differ-

ent chemical potentials for particles and their superpartners, thereby accounting for possible

deviations from superequilibrium. This is of importance because in supersymmetric scenar-

ios the CP -violating sources generally involve interactions between supersymmetric parti-

cles and the space-time varying Higgs vacuum expectation values, leading to non-vanishing

densities for the superpartners. Since the electroweak sphalerons feed on a net left-handed

charge for quarks and leptons, supersymmetric interactions must efficiently transfer the

non-vanishing superpartner densities into an asymmetry involving left-handed SM fermions.

In the MSSM, the most important source of left-handed charge is CP-violation in

the Higgsino-gaugino sector that gives rise to a non-vanishing Higgsino density (see, e.g.,

refs. [25–27] and references therein). The source S��CP
H̃

requires a non-vanishing phase be-

tween the supersymmetric µ parameter and the SUSY-breaking gaugino mass parameters,

M1,2. Its magnitude is largest when the difference between µ and either M1 or M2 is small

compared to their magnitudes, leading to so-called resonant electroweak baryogenesis. In

previous work, it is usually assumed that supergauge interactions , such as H̃ W̃ ↔ Hu,d,

are sufficiently fast, that once S��CP
H̃

generates a non-vanishing Higgsino density, the latter

immediately converts into a non-vanishing Higgs boson density. Under this assumption of

gaugino-mediated superequilibrium, one may work with a total density H for the Higgs

bosons and their superpartners. Yukawa interactions convert theH density into that for SM

quarks and leptons, which are again assumed to be in equilibrium with their superpartners.

These assumptions are indeed well justified when the supergauge interactions are in

equilibrium. By not distinguishing between chemical potentials of particles and their super-

partners, superequilibrium has been implicitly imposed in producing the numerical results

presented in refs. [23, 24]. In this paper, we do distinguish between particle and sparticle

chemical potentials and take accurate account of the finite interaction rates that tend to

establish superequilibrium. In doing so, we show that:

• Superequilibrium holds in most of the relevant MSSM parameter space. We pro-

duce both analytic arguments to illustrate the reasons why and numerical studies for

parameter space regions where the analytic arguments break down.

• Superequilibrium yet may be maintained when supergauge interactions are slow, ei-

ther because the gauginos are heavy and decouple from the plasma or because the

corresponding three-body interactions are kinematically forbidden. This preservation

of superequilibrium arises through a chain of reactions involving Yukawa interactions.

• In the gaugino decoupling regime, the chain of Yukawa reactions may be broken

due to the presence of addtional heavy (s)particles, leading to a departure from

superequilibrium. The assumption of superequilibrium in this case may lead to an

unrealistic prediction for YB. Such scenarios may be relevant in extensions of the

MSSM that do not require light gauginos for the existence of significant CP-violating

sources in the transport equations (1.4).

– 5 –
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1.3 Outline of this paper

The plan of this paper is as follows: section 2, culminates in the full network of Boltzmann

equations that describe diffusion, which we present in section 2.9. Leading to this, we

discuss how these equations may be derived within the closed time path formalism (sec-

tion 2.1), list the relevant interactions within the MSSM (section 2.2), introduce the fully

thermally averaged three-body supergauge interactions (section 2.3), discuss the thermally

averaged Yukawa and triscalar interactions (section 2.4) and the particular source and

relaxation rates for the asymmetry (section 2.6). Additional inputs needed are thermal

masses (section 2.7) and diffusion constants (section 2.8). Some simplifications in the ap-

proximation of thermal effects in the averaged interaction rates are discussed and justified

in section 2.10.

In section 3, we present approximate analytical solutions to the Boltzmann equations.

While in section 3.2, a brief review of the discussion in refs. [23, 24] is provided, in sec-

tion 3.1 we go beyond that and show how superequilibrium can be maintained even in

case when supergauge interactions are quenched (e.g. through large gaugino masses or for

kinematic reasons).

In section 4, we provide the numerical evidence for the preceding discussions. An

illustrative point in parameter space is presented, where the analytical approximation is

justified and yields reasonably accurate predictions for the densities ahead of the wall

(section 4.1). By variation of tan β, the effect of changing the strength of down-type Yukawa

couplings is investigated in section 4.2. We refer the reader to figure 4 which illustrate this

tan β-dependence on the relationships between chemical potentials for particles and their

superpartners, and to figure 5, which shows the corresponding impact on the relationships

between left- and right-handed Standard Model fermion chemical potentials. These figures

also illustrate the impact of Yukawa-induced superequilibrium that would persist if the

supergauge interaction rates were set to zero. How superequilibrium is broken and how it

can be maintained in the absence of supergauge interactions is exemplified in section 4.3.

Figure 6 summarizes the final impact on the baryon asymmetry of several of these features.

There we give YB as a function of tan β that results from the full computation with our

benchmark input parameters and compare to the results that would have been obtained

had we neglected the presence of supergauge interactions, the third generation lepton

contributions, or departures from superequilibrium that arise at large tan β. Conclusions

are drawn in section 5.

2 Diffusion transport equations

In this section, we discuss in detail the derivation of diffusion transport equations. In

comparison to earlier treatments, we generalize these equations to distinguish between

particle densities and the densities of their superpartners.

2.1 Three-body rates: general formalism

We derive the diffusion transport equations for EWB using the closed time path (CTP)

Schwinger-Dyson equations. Although one may use conventional kinetic theory for this pur-

– 6 –
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pose, we adopt the CTP framework as it allows one to systematically include higher-order

corrections and the effects associated with departure from adiabatic quantum evolution

(for a detailed review of the CTP framework as applied to EWB, see our earlier work in

refs. [25, 28]). The CTP transport equations for bosons and fermions have the form [26, 29]:

∂nB
∂X0

(X) + ∇·jB(X) =

∫
d3z

∫ X0

−∞

dz0

[
Σ>
B(X, z)G<(z,X) −G>(X, z)Σ<

B(z,X) (2.1)

+G<(X, z)Σ>
B(z,X) − Σ<

B(X, z)G>(z,X)
]
,

∂nF
∂X0

(X)+∇·jF (X) =−
∫
d3z

∫ X0

−∞

dz0Tr
[
Σ>
F (X, z)S<(z,X)−S>(X, z)Σ<

F (z,X) (2.2)

+S<(X, z)Σ>
F (z,X) − Σ<

F (X, z)S>(z,X)
]
,

where jµB = (nB , jB) and jµF = (nF , jF ) are the boson and fermion current densities,

respectively. The functions G>, <(x, y) and S>, <(x, y) are elements of the 2× 2 matrix of

CTP boson and fermion propagators:

Gab(x, y) = 〈TP
[
φa(x)φb †(y)

]
〉 , (2.3)

Sab(x, y) = 〈TP
[
ψ(x)aψ

b
(y)
]
〉 , (2.4)

where 〈. . .〉 denotes an average over the physical state of the system, TP is a path ordering

operator, and the indices a, b denote the branch of a closed time integration path running

from −∞ to +∞ (the “+” branch) and back to −∞ (the “−” branch) the fields inhabit.

In the case of the bosonic Greens functions, one has

G++(x, y) ≡ Gt(x, y) = 〈T
[
φ(x)φ†(y)

]
〉 , (2.5)

G+−(x, y) ≡ G<(x, y) = 〈φ†(y)φ(x)〉 , (2.6)

G−+(x, y) ≡ G>(x, y) = 〈φ(x)φ†(y)〉 , (2.7)

G−−(x, y) ≡ Gt̄(x, y) = 〈T̄
[
φ(x)φ†(y)

]
〉 , (2.8)

while the corresponding expressions for the elements of Sab(x, y) contain the appropriate

factors of −1 to account for fermion anti-commutation relations. The self energy functions

Σ>, <
B (x, y) and Σ>, <

F (x, y) give the corresponding one particle irreducible corrections to

the free inverse CTP propagators.

The source terms on the r.h.s. of eqs. (2.1) and (2.2) can be obtained by computing

Σ>, <
B (x, y) and Σ>, <

F (x, y) order-by-order in perturbation theory. In general, doing so

requires knowledge of the non-equilibrium distribution functions. However, the presence of

a hierarchy of scales allows one to expand these functions about their equilibrium values

in powers of appropriate scale ratios. As discussed in refs. [25, 28], these scales include

a decoherence time, τd, associated with the departure from adiabatic dynamics; a plasma

time, τp, associated with mixing between degenerate states in the plasma; and an intrinsic

quasiparticle evolution time, τint, associated with the time evolution of a state of a given

energy. For the dynamics of the electroweak plasma, one finds that τint ≪ τp ≪ τd, leading

– 7 –
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to a natural expansion in the scale ratios: εd ≡ τint/τd ∼ vwkeff/ω and εp ≡ τint/τp ∼ Γp/ω

with vw being the bubble wall expansion velocity, k−1
eff being an effective length scale (such

as the wall thickness), Γp being a thermal quasiparticle “damping rate” in the plasma,

and ω being the quasiparticle frequency. Here, we include in the damping rate any an

process involving emission and absorption from the thermal bath. In addition, the plasma

is relatively dilute, so that the ratio of chemical potentials to temperature, εµ = µ/T ,

provides an additional expansion parameter.

In terms of the ε parameters, the leading contributions to the r.h.s. of eqs. (2.1)

and (2.2) occur at O(ε2). Specifically, the CP -violating sources include effects of order

εd × εp or ε2d, while the CP -conserving sources arise at order εp × εµ. In this context, the

supergauge interactions generate terms of the latter type. As discussed in refs. [25, 28],

the presence of the scale hierarchies embodied in the ε parameters allows us to adopt

the quasiparticle ansatz for the CTP Green functions and to work near chemical and ki-

netic equilibrium when computing these terms. To this end, we compute the the terms

on the right hand side of the transport equations (2.1), (2.2) following the procedure used

in ref. [28] for the calculation of the ΓY -type terms. The bosonic CTP Green functions

entering the computation are given by

G>i (x, y) =

∫
d4k

(2π)4

(
1 + fB(k0, µi)

)
ρi(k0,k) , (2.9)

G<i (x, y) =

∫
d4k

(2π)4
fB(k0, µi) ρi(k0,k) , (2.10)

with spectral functions

ρi(k0,k) = π/ωk

[
δ(k0 − ωk) − δ(k0 + ωk)

]
(2.11)

=
i

2ωk

[(
1

k0 − ωk + iǫ
− 1

k0 + ωk + iǫ

)
−
(

1

k0 − ωk − iǫ
− 1

k0 + ωk − iǫ

)]
,

where ωk =
√

|k|2 +m2. The ρi(k0,k) can be appropriately modified to take into account

collision-broadening and thermal masses. Using the expansion in ε parameters introduced

above, it suffices to take the distribution functions to be close to the equilibrium form

fB(k0, µi) = nB(k0, µi) + O(εd/εp) , (2.12)

where nB(k0, µi) = 1/[e(k0−µi)/T − 1] and µi is a local chemical potential . Here we neglect

the terms of order εd/εp ∼ vwkeff/Γp ≪ 1.

Similar expressions are obtained for the fermion Green functions:

S>(x, y) = 〈ψ(x)ψ̄(y)〉 , (2.13)

S<(x, y) = −〈ψ̄(y)ψ(x)〉 , (2.14)

which can be expressed as

Sλ(x, y) =

∫
d4k

(2π)4
e−ik·(x−y)fλF (k0, µ)ρ(k0,k) (/k +m) , (2.15)

– 8 –
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where λ denotes either “>” or “<” and and with the functions

f>F (k0, µ) = 1 − nF (k0 − µ) , (2.16a)

f<F (k0, µ) = −nF (k0 − µ) , (2.16b)

with nF (k0, µi) = 1/[e(k0−µi)/T + 1].

2.2 MSSM interaction Lagrangian

In order to calculate the transport coefficients in the Boltzmann equations, we first identify

the relevant interactions in the MSSM Lagrangian. These interactions, denoted by Lint,

can be divided into three classes:

Lint = LM + LY + LeV . (2.17)

Bilinear interactions that arise when the neutral Higgs bosons acquire vacuum expectation

values (vevs) are

LM = − yt t̃
∗
R t̃L (At vu + µ∗vd) − yt vu t̄R PL tL (2.18)

− yb b̃
∗
R b̃L (Ab vd + µ∗vu) − yb vd b̄R PL bL

− yτ τ̃
∗
R τ̃L (Aτ vd + µ∗vu) − yτ vd τ̄R PL τL

− g1√
2

Ψ̄ eH0(vd PL − eiφ
M1
µ vu PR)Ψ eB − g2√

2
Ψ̄ eH0(vd PL + eiφ

M2
µ vu PR)ΨfW 0

− g2 Ψ̄ eH+(vd PL + eiφ
M2
µ vu PR)ΨfW+ + h.c.

These terms, which result in squarks, quarks, sleptons, leptons and Higgsinos scattering

due to the spacetime-dependent Higgs vevs vu(x) and vd(x), contribute to CP -violating

sources S��CP and CP -conserving relaxation rates ΓM and ΓH . The calculation of S��CP has

received the most attention, both in the CTP approach and in other frameworks; however,

there remains a significant dispersion in the recent calculations of separate groups [25, 30–

33]. The CP -conserving relaxation rates have been estimated in ref. [20], and rigorously

calculated and studied with CTP methods in ref. [25] in a manner consistent with the

computation of the CP -violating sources.

Trilinear interactions proportional to the top Yukawa coupling yt are

Lyt = − yt t̃
∗
R t̃L

(
At H

0
u + µ∗H0∗

d

)
+ yt t̃

∗
R b̃L

(
At H

+
u − µ∗H−∗

d

)
(2.19)

+ yt
(
H+
u t̄R PL bL −H0

u t̄R PL tL
)

+ yt e
iφµ

(
t̃R t̄L PR ΨC

eH0 + t̃R b̄L PR ΨC
eH+

)

+ yt e
−iφµ

(
t̃L t̄R PL Ψ eH0 + b̃L t̄R PL Ψ eH+

)
+ h.c. .

For the bottom Yukawa coupling yb the corresponding interactions are

Lyb = − yb b̃
∗
R b̃L

(
Ab H

0
d + µ∗H0∗

u

)
+ yb b̃

∗
R t̃L

(
Ab H

−
d − µ∗H+∗

u

)
(2.20)

+ yb
(
H−
d b̄R PL tL −H0

d b̄R PL bL
)
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+ yb

(
−b̃R b̄L PR Ψ eH0 + b̃R t̄L PR Ψ eH+

)

+ yb

(
b̃L b̄R PL ΨC

eH0 − t̃L b̄R PL ΨC
eH+

)
+ h.c. ,

where we have employed notations and rephasing conventions according to ref. [25]. The

corresponding interactions Lyτ for third generation (s)leptons follow when replacing bR →
τR and tL → ντ in Lyb .

In general, all interactions mediated by third generation Yukawa and triscalar couplings

may have a sizeable impact on the result of EWB, such that we consider

LY = Lyt + Lyb + Lyτ . (2.21)

These terms, which are Yukawa interactions and their supersymmetric counterparts, lead to

transport coefficients generically denoted ΓY . These equilibration rates are potentially im-

portant in that they communicate CP -asymmetries from the Higgs sector to the quark sec-

tor, biasing sphalerons to produce a baryon asymmetry. The dominant absorption/emission

contribution to ΓY has been studied within the CTP framework in ref. [28]; the sub-

dominant scattering contribution to ΓY has been partially calculated in refs. [20, 21].

Supergauge interactions are

LeV
= − g1√

2

[
Ψ̄ eH+(H−∗

d PL + eiφ
M1
µ H+

u PR)Ψ eB
+ Ψ̄ eH0(H

0∗
d PL − eiφ

M1
µ H0

u PR)Ψ eB

]
(2.22)

− g2√
2

[
Ψ̄ eH+(−H−∗

d PL + eiφ
M2
µ H+

u PR)ΨfW 0 + Ψ̄ eH0(H
0∗
d PL + eiφ

M2
µ H0

u PR)ΨfW 0

]

− g2

[
Ψ̄ eH+(H0∗

d PL + eiφ
M2
µ H0

u PR)ΨfW+ + Ψ̄fW+(H−∗
d PL − eiφ

M2
µ H+

u PR)ΨC
eH0

]

− g2√
2

[
ũi∗L Ψ̄fW 0 PL u

i
L − d̃i∗L Ψ̄fW 0 PL d

i
L + ν̃i

∗

L Ψ̄fW 0PL ν
i
L − ẽi

∗

L Ψ̄fW 0PL e
i
L

]

− g1

3
√

2

[
ũi∗L Ψ̄ eB PL u

i
L + d̃i∗L Ψ̄ eB PL d

i
L

]
+

g1√
2

[
ν̃i∗L Ψ̄ eB PLν

i
L + ẽi∗L Ψ̄ eB PLe

i
L

]

− g3
√

2
[
ũi∗L λ

aΨ̄a
eG
PL u

i
L + d̃i∗L λ

a Ψ̄a
eG
PL d

i
L

]

− g2V
∗
ij d̃

j∗
L Ψ̄fW+PLu

i
L−g2Vij ũi∗L Ψ̄C

fW+
PLd

j
L−g2ẽi∗L Ψ̄fW+PLν

i
L−g2ν̃i∗L Ψ̄C

fW+
PLe

i
L

− g3
√

2
[
ũiR λ̄

aūiRPLΨa
eG

+ d̃iR λ̄
ad̄iRPLΨa

eG

]

+
2
√

2

3
g1
[
ũiR ū

i
R PL Ψ eB

]
−
√

2

3
g1

[
d̃iR d̄

i
R PL Ψ eB

]
+
√

2 g1
[
ẽiR ē

i
R PL Ψ eB

]
+ h.c. ,

where λa and λ̄a are the generators of 3 and 3̄ of SU(3). These supergauge interactions —

the supersymmetric version of gauge interactions in the SM — lead to transport coefficients,

generically denoted by ΓeV
, which tend to equilibrate the chemical potentials for particles

and their superpartners. All previous studies have assumed the limit ΓṼ → ∞, which leads

to superequilibrium. One of the purposes of the present work is to calculate ΓeV and to

solve the Boltzmann equations without the assumption of superequilibrium.

In employing these interactions to compute the supergauge equilibration rates, we work

with the mass eigenstates of the unbroken phase: gauginos and Higgsinos (rather than

charginos and neutralinos), left- and right-handed quarks and squarks, and Higgs scalars.
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Deep inside the bubble, this choice is clearly not appropriate, owing to large flavor mixing

induced by the non-zero Higgs vevs. A proper treatment of this flavor mixing requires

a modification of the transport equations that allows for an all-orders summation of the

spacetime varying Higgs vevs [33, 34]. In the absence of such a treatment, we will work in

the “vev insertion” approximation, defined by assuming that the dynamics of chiral charge

production are dominated by the region near the phase boundary and that the Higgs vevs

in this region are small compared to the temperature and slowly varying (i.e., the wall is

relatively thick). Under these assumptions one may treat the flavor mixing perturbatively.

We find below that the particle densities are generally largest in magnitude near the phase

boundary as one would expect if the vev insertion approximation is valid. Nonetheless,

we emphasize that our specific numerical conclusions are provisional and await a more

complete treatment of the flavor mixing dynamics in the broken phase within the bubble.

Within the spectrum of unbroken phase eigenstates, the Higgs scalars provide addi-

tional complications. To appreciate the difficulties more clearly, suppose for simplicity the

lightest Higgs mass eigenvector field φ is a fixed linear combination of Hu and Hd as we

pass through the bubble wall. Then the naive dispersion relationship for φ modes in the

WKB approximation will be

ωk =
√

|k|2 + V ′′(φ) (2.23)

where V (φ) is the thermal effective potential and v(x) = 〈φ〉 solves the Euler-Lagrange

equations involving V ′(φ) leading to the cancellation of tadpoles. For states with suffi-

ciently large momentum, the fact that V ′′(φ) < 0 in a particular φ range will be unimpor-

tant. However, sufficiently soft modes will become unstable if V ′′(φ) < 0 and may lead

to significant backreaction corrections to v(x) on time scales of order Imω−1
k

and can also

lead to particle production effects. Note that this statement of the problem is a bit more

subtle than it seems because v(x) is not spatially homogeneous while the thermal effective

potential V (v) obtained by the usual construction methods corresponds to the energy of

the system with v fixed to be spatially homogeneous (e.g. see [35]).

In this paper, we will simply settle with an estimate of the error incurred by neglecting

this inhomogeneous bubble profile effect on the Higgs transport equations, and leave a

more detailed analysis to a future work.3 If we denote the largest magnitude of V ′′(φ) < 0

region when the temperature is near the critical temperature Tc as kc ≡ max[|V ′′(φ)|1/2] ,

the effect of neglecting of the V ′′(φ) < 0 region on the Higgs transport equations can be

estimated by the following fractional thermal distribution number density:

nc
n

≈ H(kc/Tc,m/Tc)

H(∞,m/Tc)
, (2.24)

where

H(kc/T,m/T ) ≡
∫ √

k2
c/T

2+m2/T 2

m/T
dxx

√
x2 −m2/T 2 [exp (x) − 1]−1 (2.25)

and where m is the unbroken phase mass. The function nc/n is a monotonically increasing

function with kc/T and a monotonically decreasing function with increasing m. Although

3Any large effects coming from this is unlikely to be computable analytically.
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the exact value of kc/Tc is model dependent, if we take 1 . kc/Tc . 2 and take m/Tc = 0.7,

we arrive at fractional correction estimate of

0.09 .
nc
n

. 0.35. (2.26)

Hence, we can expect order 10% of the Higgs scalar density will have significantly distorted

phase space distribution due to the instability of these modes. Although not completely

negligible numerically, these effects can be seen as refinements on the order unity effects

presented in this paper.

In the remainder of the paper, we will make the simplifying assumption that quadratic

fluctuations about the classical solution to the field equations can be approximated by a

set of scalar fields (H+
u ,H

0
u,H

−
d ,H

0
d) with mass terms

L ⊃ −
(
H+†
u ,H−

d

)(m2
Hu

+ |µ|2 + δu b+ δb
b+ δb m2

Hd
+ |µ|2 + δd

)(
H+
u

H−†
d

)
, (2.27)

and the same for (H0
u,H

0†
d ) but with b + δb → −(b + δb). The terms δu,d,b denote finite

temperature corrections which lead to a minimum in the Higgs scalar potential at vu = vd =

0. We can re-express this mass matrix using the minimization conditions for electroweak

symmetry breaking at T = 0 [36]:

m2
Hu + |µ|2 = m2

A cos2 β0 +
1

2
m2
Z cos 2β0 , (2.28)

m2
Hd

+ |µ|2 = m2
A sin2 β0 −

1

2
m2
Z cos 2β0 , (2.29)

b = m2
A sin β0 cos β0 , (2.30)

where mZ and mA are the Z and pseudoscalar Higgs boson masses at T = 0 and

tanβ0 ≡ vu
vd

∣∣∣∣
T=0

. (2.31)

Therefore, the mass term becomes

L ⊃ −
(
H+†
u ,H−

d

)(m2
A cos2 β0+ 1

2m
2
z cos 2β0+δu

1
2m

2
A sin 2β0 + δb

1
2m

2
A sin 2β0 + δb m2

A sin2 β0− 1
2m

2
Z cos 2β0+δd

)(
H+
u

H−†
d

)
.

(2.32)

The eigenvalues, corresponding to the charged Higgs scalar masses in the unbroken phase,

are

m2
H1,2

=
1

2

[
m2
A+(δu+δd)∓

√(
(m2

A+m2
Z) cos 2β0+(δu−δd)

)2
+(m2

A sin 2β0+2δb)2
]
.

(2.33)

We see that if δu,d,b → 0, then m2
H1

< 0 — a consequence of the fact that electroweak

symmetry is broken at low temperatures. Furthermore, the mixing angle α, defined by
(
H+
u

H−†
d

)
=

(
cosα sinα

− sinα cosα

) (
H+

1

H+
2

)
, (2.34)
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is given by

tan 2α =
m2
A sin 2β0 + 2δb

m2
A cos 2β0 +m2

Z cos 2β0 + δu − δd
. (2.35)

(The neutral Higgs mass matrix differs from the charged Higgs mass matrix only by

b + δb → −(b+ δb); the mass eigenvalues are the same and the mixing angle differs by an

overall sign). We emphasize that we are diagonalizing the Higgs potential about its mini-

mum at 〈Hu〉 = 〈Hd〉 = 0 in the unbroken phase, as opposed to the usual zero-temperature

treatment [36]; our results for m2
H1,2

and α do not simplify to the zero-temperature Higgs

masses and mixing angles in the limit δu,d,b → 0.

If we assume that mA ≫ mZ , δu,d,b, and tan β0 ≫ 1, then

m2
H1

≃ δu −
1

2
m2
Z (2.36)

m2
H2

≃ m2
A +

1

2
m2
Z + δd (2.37)

and α ≃ 1/ tan β0. In our analysis, we will use eq. (2.35). In general, this mixing angle will

be spacetime-dependent due to the appearance of terms in the mass matrix proportional

to vu(x), vd(x). However, it has been found that

∆β ≡ β(T )
∣∣∣
z→∞

− β(T )
∣∣∣
z→−∞

(2.38)

is numerically small: ∆β . 10−2 [37]. Therefore, we neglect the spacetime-dependence

of the Higgs mixing angle. (In extended supersymmetric EWB scenarios, it is conceiv-

able that ∆β might be larger, necessitating a proper treatment of spacetime-dependent

Higgs mixing.)

The purpose of the preceding analysis is to motivate realistic masses and mixing angles

in the Higgs sector. We defer a rigorous determination of Higgs boson masses and mixing

during EWB to a future study.

2.3 Supergauge equilibration rates

Supergauge interactions generate three-body absorption/decay processes as illustrated in

figure 1(a). These processes drive the plasma toward superequilibrium, the condition where

the chemical potentials for a particle and its superpartner are equal. Following closely the

derivation of ΓY that is presented in ref. [28], we calculate the fully thermally averaged

rates ΓeV in the on-shell limit.

We compute the supergauge interaction rates ΓeV arising from emission/absorption

processes in the thermal plasma [figure 1(a)]. Each supergauge interaction term in eq. (2.22)

can be cast in the general form

Lint = φ ψ̄ (gL PL + gR PR) Ṽ + h.c. (2.39)

for gaugino Ṽ , and (bosonic, fermionic) superpartners (φ,ψ). These interactions give

contributions to the r.h.s. of eqs. (2.1), (2.2) of the form

∂µ j
µ
φ (X) = −∂µ jµψ(X) = SeV

, (2.40)

– 13 –



J
H
E
P
1
2
(
2
0
0
9
)
0
6
7

g

qL

q̃L

g̃

qL

(b)

g̃

q̃L

qL

(a)

Figure 1. Examples of absorption/decay (a) and scattering (b) processes which lead to superequi-

librium.

where

SeV
≡
[( ∣∣g2

L

∣∣+
∣∣g2
R

∣∣ ) IF
(
mψ,mφ,meV

)
+ 2Re (gLg

∗
R) ĨF

(
mψ,mφ,meV

)] (
µψ − µφ − µeV

)
.

(2.41)

The functions IF and ĨF are defined to be [28]

IF (m1,mφ,m2) =
1

16π3T

(
m2

1 +m2
2 −m2

φ

) ∫ ∞

m1

dω1

∫ ω+
φ

ω−

φ

dωφ (2.42)

×
{
nB(ωφ)

[
1−nF (ω1)

]
nF (ω1−ωφ)

[
θ(m1−m2−mφ)−θ(mφ−m1−m2)

]

+ nB(ωφ)nF (ω1)
[
1 − nF (ω1 + ωφ)

]
θ(m2 −m1 −mφ)

}
,

with integration limits on ωφ given by

ω±
φ =

1

2m2
1

{
ω1

∣∣m2
φ +m2

1 −m2
2

∣∣

±
[
(ω2

1 −m2
1)
(
m2

1 − (m2 +mφ)
2
)(
m2

1 − (m2 −mφ)
2
)]1/2}

;

(2.43)

and lastly

ĨF (m1,mφ,m2) =
2m1m2

m2
1 +m2

2 −m2
φ

IF (m1,mφ,m2) . (2.44)

The gaugino chemical potential µeV only appears on the r.h.s. of eq. (2.41) when the

gaugino is a Dirac fermion (i.e., for W̃±). For Majorana gauginos, no gaugino chemical

potential appears. Although a Majorana chemical potential does not correspond to a con-

served Noether current, it can arise as a deviation from a pure Fermi-Dirac distribution

when annihilation processes are out of equilibrium. However, such a deviation does not

contribute to eq. (2.41) due to CP-symmetry. The charge current densities and corre-

sponding chemical potentials for Dirac fermions and complex scalars are all odd under CP.

However, a Majorana chemical potential is even under CP. Therefore, in the limit that we

can neglect CP-violating phases in our interaction rates, Majorana chemical potentials do

not contribute to the Boltzmann equations for charge current densities. We have explicitly

verified that a non-vanishing Majorana chemical potential ultimately cancels from SeV
to
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linear order in ǫµ and at zeroth order in CP -violating phases φCP. Physically speaking,

an excess of Majorana gauginos Ṽ does not bias a charge asymmetry in ψ and φ since the

rates for Ṽ ↔ ψφ and Ṽ ↔ ψ̄φ† are equal.4

At present, we work exclusively within the MSSM, where existing measurements con-

strain φCP ≪ 1; consequently, we neglect these contributions. In extensions of the MSSM

where additional CP -violating phases are less constrained and may be large, the non-

equilibrium dynamics of Majorana fermions may be important. We also emphasize that

these arguments apply to the degrees of freedom that are present in the symmetric phase.

This is consistent within the framework of the present paper, as our main focus is the diffu-

sion process in the symmetric phase and as we calculate the source and relaxation terms in

a pertubative mass-insertion scheme. Note that in the broken phase, the Higgsinos, which

are treated as charged particles in the symmetric phase, mix e.g. with the Binos, which are

Majorana particles. The resulting neutralinos are Majorana particles, but due to their Hig-

gsino component, their out-of-equilibrium dynamics is crucial for EWB. A non-pertubative

treatment of the mixing in the broken phase will be subject of future investigations.

We can relate the chemical potentials µ to charge number densities n via

n ≡
∫

d3p

(2π)3

(
1

e(ωp−µ)/T ± 1
− 1

e(ωp+µ)/T ± 1

)
=
T 2

6
k(m/T ) µ + O(ǫ3µ) , (2.45)

where k(m/T ) is a statistical factor [25]

k(m/T ) = k(0)
cF,B
π2

∫ ∞

m/T
dxx

ex

(ex ± 1)2

√
x2 −m2/T 2 (2.46)

with k(0) = 1 for chiral fermions, k(0) = 2 for Dirac fermions and complex scalars,

cF (B) = 6(3) for fermions (bosons), and the + (−) sign for fermions (bosons). There-

fore, we can write

SeV = Γ
(ψ,φ)
eV

(
nψ
kψ

− nφ
kφ

)
(2.47)

for Majorana Ṽ , where

Γ
(ψ,φ)
eV

≡ 6

T 2

[( ∣∣g2
L

∣∣+
∣∣g2
R

∣∣ ) IF
(
mψ,mφ,meV

)
+ 2Re (gLg

∗
R) ĨF

(
mψ,mφ,meV

)]
. (2.48)

If Ṽ is Dirac, as is the case for W̃±, the situation is more subtle. Instead of eq. (2.47),

when inserting eq. (2.48) into eq. (2.41), we have

SeV = Γ
(ψ,φ)
eV

(
nψ
kψ

− nφ
kφ

−
neV

keV

)
, (2.49)

meaning that that non-equilibrium dynamics of W̃± does not in general decouple from the

dynamics that produces YB . Let us consider the contributions from SfW± to the Boltzmann

4In leptogenesis scenarios, a heavy Majorana neutrino can bias a chiral lepton asymmetry, as long as the

relevant CP -violating phases are non-zero. This is consistent with the statement that, in the present discus-

sion, transport coefficients which couple Majorana chemical potential µeV
to µφ, µψ arise at order O(sin φCP).
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equations (2.2) for the third generation LH quarks:

∂µj
µ
tL

= − g2
2 |Vtb|2 IF (mtL ,mebL

,mfW±)
(
µtL − µebL

− µfW±

)
, (2.50a)

∂µj
µ
bL

= − g2
2 |Vtb|2 IF (mbL ,metL

,mfW±)
(
µbL − µetL

+ µfW±

)
. (2.50b)

Now we define

µq ≡ 1

2
(µtL + µbL) , (2.51a)

µeq ≡ 1

2

(
µetL

+ µebL

)
, (2.51b)

∆µq ≡ 1

2
(µtL − µbL) , (2.51c)

∆µeq ≡ 1

2

(
µetL

− µebL

)
. (2.51d)

With these definitions, we obtain from eqs. (2.50)

∂µ

(
jµuL + jµdL

)
= −NC g

2
2 |Vtb|2

[
IF (mtL ,mebL

,mfW±) + IF (mbL ,metL
,mfW±)

] (
µq − µeq

)

−NC g
2
2 |Vtb|2

[
IF (mtL ,mebL

,mfW±) − IF (mbL ,metL
,mfW±)

]
(2.52)

×
(
∆µq + ∆µeq − 2µfW±

)

and

∂µ

(
jµuL − jµdL

)
= −NC g

2
2 |Vtb|2

[
IF (mtL ,mebL

,mfW±) − IF (mbL ,metL
,mfW±)

] (
µq − µeq

)

−NC g
2
2 |Vtb|2

[
IF (mtL ,mebL

,mfW±) + IF (mbL ,metL
,mfW±)

]
(2.53)

×
(
∆µq + ∆µeq − 2µfW±

)

In the unbroken phase, where vu = vd = 0, we have mtL(T ) = mbL(T ) ≡ mq and metL
(T ) =

mebL
(T ) ≡ meq, so that the differences

[
IF (mtL ,mebL

,mfW±) − IF (mbL ,metL
,mfW±)

]
−→ 0 , (2.54)

while the sums
[
IF (mtL ,mebL

,mfW±) + IF (mbL ,metL
,mfW±)

]
−→ 2IF (mq,meq,mfW±) . (2.55)

Therefore, to the extent that we can neglect isospin-violating mass differences within the

bubble, isovector asymmetries such as ∆µq decouple from isoscalar densities such as µq.

Although we have chosen only only one interaction as an illustration, we have verified that

the decoupling of isoscalar and isovector densities occurs for all Yukawa and supergauge

interactions (2.19), (2.22). Since YB is produced by weak sphalerons sourced by the chiral

asymmetry

nleft ≡
3∑

i=1

(
nui

L
+ ndi

L

)
, (2.56)
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itself an iso-scalar density, isospin-violating asymmetries decouple from the determination

YB . In particular, nfW± only couples to isospin-violating asymmetries and will decouple

from the dynamics of nleft. Therefore, we consider the closed set of Boltzmann equations

for the following twenty-five densities:

H1,2 ≡ nH+
1,2

+ nH0
1,2
, H̃ ≡ n eH+ + n eH0 , (2.57a)

q1,2 ≡ nu1,2
L

+ nd1,2
L
, q̃1,2 ≡ n

eu1,2
L

+ ned1,2
L
, (2.57b)

q ≡ q3 ≡ ntL + nbL , q̃ ≡ q̃3 ≡ netL
+ nebL

, (2.57c)

u1,2 ≡ nu1,2
R
, ũ1,2 ≡ n

eu1,2
R
, (2.57d)

t ≡ u3 ≡ ntR , t̃ ≡ ũ3 ≡ netR
, (2.57e)

d1,2 ≡ n
d1,2
R
, d̃1,2 ≡ ned1,2

R

, (2.57f)

b ≡ d3 ≡ nbR , b̃ ≡ d̃2 ≡ nebR
. (2.57g)

ℓ ≡ ℓ3 ≡ nτL + nντL , ℓ̃ ≡ ℓ̃3 ≡ neτL + neντ
L
, (2.57h)

τ ≡ nτR , τ̃ ≡ neτR . (2.57i)

We defer to future work the study of isospin breaking effects within the bubble wall which

couple isospin-violating asymmetries to those listed above. Note that within the context

of non-supersymmetric models, a study of deviation from isospin equilibrium has been

performed and the effect has been found to be quantitatively relevant [38].

The supergauge equilibration rates that enter the Boltzmann equations for these den-

sities (2.57) are

Γ
(H1, eH)
eV

=
6 g2

1

T 2

[
IF (m eH

,mH1 ,m eB
) − sin 2α ĨF (m eH

,mH1 ,m eB
)
]

(2.58a)

+
18 g2

2

T 2

[
IF (m eH

,mH1 ,mfW
) + sin 2α ĨF (m eH

,mH1 ,mfW
)
]
,

Γ
(H2, eH)
eV

=
6 g2

1

T 2

[
IF (m eH ,mH2 ,m eB) + sin 2α ĨF (m eH ,mH2 ,m eB)

]
(2.58b)

+
18 g2

2

T 2

[
IF (m eH ,mH2 ,mfW

) − sin 2α ĨF (m eH ,mH2 ,mfW
)
]
,

Γ
(q,eq)
eV

=
2NC g

2
1

3T 2
IF (mq,meq,m eB) +

18NC g
2
2

T 2
IF
(
mq,meq,mfW

)
(2.58c)

+
12(N2

C − 1) g2
3

T 2
IF
(
mq,meq,m eG

)
,

Γ
(u,eu)
eV

=
16NC g

2
1

3T 2
IF
(
mu,meu,m eB

)
+

6(N2
C − 1) g2

3

T 2
IF
(
mu,meu,m eG

)
, (2.58d)

Γ
(d,ed)
eV

=
4NC g

2
1

3T 2
IF
(
md,med

,m eB

)
+

6(N2
C − 1) g2

3

T 2
IF
(
md,med

,m eG

)
, (2.58e)

Γ
(ℓ,eℓ)
eV

=
6g2

1

T 2
IF
(
meℓ
,mℓ,m eB

)
+

18g2
2

T 2
IF
(
meℓ
,mℓ,mfW

)
, (2.58f)

Γ
(τ,eτ)
eV

=
12g2

1

T 2
IF
(
meτ ,mτ ,m eB

)
, (2.58g)
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where in eqns. (2.58c)–(2.58e) we have omitted a generational index since these expressions

are identical for all generations.

2.4 Yukawa, tri-scalar, and Higgs vev induced interactions

Presently, we summarize contributions to the Boltzmann equations that arise from interac-

tions in eqs. (2.18), (2.19). Yukawa and SUSY-breaking tri-scalar interactions (2.19) lead

to transport coefficients in the Boltzmann equations which couple Higgs, RH quark, and

LH quark supermultiplets. We assume that the tri-scalar A-terms are proportional to the

corresponding Yukawa coupling [36]. For example, the term

LY ⊃ yt e
iφµ

(
t̃R t̄L PR ΨC

eH0 + t̃R b̄L PR ΨC
eH+

)
(2.59)

in eq. (2.19) leads to a contribution to the Boltzmann equations for densities t̃, q, H̃ of the

form

∂µ j
µ
eH

= ∂µ j
µ
q = −∂µ jµet = Γ

(q,et, eH)
Y

(
t̃

ket

− q

kq
− H̃

k eH

)
. (2.60)

We now list the complete set of equilibration rates [28] arising from LY :

Γ
(et,eq,H1)
Y =

12NC y
2
t

T 2
| sinαµ∗ + cosαAt |2 IB

(
met,me1,mH1

)
, (2.61a)

Γ
(et,eq,H2)
Y =

12NC y
2
t

T 2
| cosαµ∗ − sinαAt |2 IB

(
met,meq,mH2

)
, (2.61b)

Γ
(et,q, eH)
Y =

12NC y
2
t

T 2
IF
(
m eH

,met,mq

)
, (2.61c)

Γ
(t,q,H1)
Y =

12NC y
2
t

T 2
cos2 α IF (mt,mq,mH1) , (2.61d)

Γ
(t,q,H2)
Y =

12NC y
2
t

T 2
sin2 α IF (mt,mq,mH2) , (2.61e)

Γ
(t,eq, eH)
Y =

12NC y
2
t

T 2
IF
(
mt,m eH ,meq

)
; (2.61f)

Γ
(eb,eq,H1)
Y =

12NC y
2
b

T 2
| cosαµ∗ − sinαAb |2 IB

(
meb
,meq,mH1

)
, (2.61g)

Γ
(eb,eq,H2)
Y =

12NC y
2
b

T 2
| sinαµ∗ + cosαAb |2 IB

(
meb
,meq,mH2

)
, (2.61h)

Γ
(eb,q, eH)
Y =

12NC y
2
b

T 2
IF
(
m eH ,meb

,mq

)
, (2.61i)

Γ
(b,q,H1)
Y =

12NC y
2
b

T 2
sin2 α IF (mb,mq,mH1) , (2.61j)

Γ
(b,q,H2)
Y =

12NC y
2
b

T 2
cos2 α IF (mb,mq,mH2) , (2.61k)

Γ
(b,eq, eH)
Y =

12NC y
2
b

T 2
IF
(
mb,m eH ,meq

)
; (2.61l)

Γ
(eτ ,eℓ,H1)
Y =

12NC y
2
τ

T 2
| cosαµ∗ − sinαAτ |2 IB

(
meτ ,meℓ

,mH1

)
, (2.61m)

Γ
(eτ ,eℓ,H2)
Y =

12NC y
2
τ

T 2
| sinαµ∗ + cosαAτ |2 IB

(
meτ ,meℓ

,mH2

)
, (2.61n)
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Γ
(eτ ,ℓ, eH)
Y =

12NC y
2
τ

T 2
IF
(
m eH ,meτ ,mℓ

)
, (2.61o)

Γ
(τ,ℓ,H1)
Y =

12NC y
2
τ

T 2
sin2 αIF (mτ ,mℓ,mH1) , (2.61p)

Γ
(τ,ℓ,H2)
Y =

12NC y
2
τ

T 2
cos2 α IF (mτ ,mℓ,mH2) , (2.61q)

Γ
(τ,eℓ, eH)
Y =

12NC y
2
τ

T 2
IF
(
mτ ,m eH

,meℓ

)
, (2.61r)

where

IB(mR,mL,mH) = − 1

16π3T

∫ ∞

mR

dωR

∫ ω+
L

ω−

L

dωL

×
{
nB(ωR)

[
1 + nB(ωL)

]
nB(ωL − ωR)

[
θ(mR −mL −mH) − θ(mL −mR −mH)

]

− nB(ωR)nB(ωL)
[
1 + nB(ωL + ωR)

]
θ(mH −mR −mL)

}
,

(2.62)

with integration limits given by:

ω±
L =

1

2m2
R

{
ωR
∣∣m2

R +m2
L −m2

H

∣∣

±
[
(ω2
R −m2

R)
(
m2
R − (mL +mH)2

)(
m2
R − (mL −mH)2

)]1/2}
.

(2.63)

These interactions communicate the effects of CP -violation from the Higgs(ino) sector to

the (s)quark sector. If supergauge interactions are assumed to be in equilibrium, only

the sum of ΓY rates listed above enters the Boltzmann equations that determine YB . This

procedure has been applied in our recent publications [23, 24]. Without this assumption, we

must distinguish between each rate. For example, the rate for the transfer of CP -violating

effects from H̃ → t (2.61c) will be different from the rate of transfer from H̃ → t̃ (2.61f);

this difference may impact YB if transfer between t↔ t̃ is inefficient, cf. section 4.3.

2.5 Four-body and off-shell contributions

In addition, four-body scattering interactions, such as those illustrated in figure 1(b), will

also contribute to the equilibration process [21]. Although the associated rates are phase

space suppressed and are higher order in the gauge couplings than the three-body rates,

they can become leading order when the three-body processes are kinematically forbidden.

At the same order in gauge coupling constants, also off-shell processes contribute [39–41],

which are loop instead of phase space suppressed.

A calculation of these contributions to the interaction rates may hence be important

for EWB in regions of parameter space where three body interactions are kinematically

forbidden. We anticipate a full calculation that takes into account the masses in the Higgs

sector and of the sfermions and the gauginos, which typically can be of the same order

as the temperature, to be rather involved and do not perform it within the present work.
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For our parametric examples, we therefore avoid here parametric regions where three-body

rates are kinematically forbidden as much as it is possible. The only exception that we

make concerns the interaction between H1, t and q, where it is hard to avoid kinematic

suppression for three-body interactions and to allow for electroweak symmetry breaking at

the same time. We specify the estimate for the four-body interaction that we adopt for

that case in section 4.1.

2.6 Sources and relaxation terms

CP -violating sources can arise from the Lagrangian terms (2.18) involving squarks and

Higgsinos. Physically, they correspond to CP -asymmetric reflection and transmission rates

for squarks and Higgsinos scattering from the bubble wall. In ref. [25], only contributions

to source terms that become resonant are calculated; off-resonance these contributions

become comparable to other terms that have not been calculated. Therefore, we do not

include in the Boltzmann equations the chiral relaxation rates for squarks and Higgs bosons

which are non-resonant for the present choices of parameters, deferring their inclusion until

a complete calculation of these rates has been accomplished. We comment on the validity

of this approximation in section 4. In the present work, we assume a resonant Higgsino

source with |µ| = M1 = 200 GeV, which is sufficient to produce the observed BAU. The

precise formula for S��CP
eH

is given in ref. [25].

The choice of Higgsino and Bino as the source of resonant CP -violation rather than

of Higgsino and Wino is motivated by the recent evaluation of the two loop electric dipole

moments (EDMs) of the electron and the neutron in the limit of heavy first two generation

squarks and sleptons [42]. The results indicate that the size of the CP -violating phase

between µ and M1 is much less constrained by the non-observation of permanent EDMs

than the phase between µ and M2. Therefore, Bino-driven EWB [23, 24, 43] may prove to

be a more viable option, particularly as the sensitivity of EDM searches improve.

In addition to the source terms, there exist chiral relaxation rates that also arise from

particles scattering with the Higgs background field (2.18) and that tend to wash out CP -

violating asymmetries. These processes exist in both the quark and Higgs sectors and

are generically denoted as ΓM and ΓH , respectively. In the present work, since we must

distinguish between the densities for superpartners, we must likewise distinguish between

the quark and squark contributions to ΓM , and between the Higgs boson and Higgsino

contributions to ΓH . In the Boltzmann equations to follow, we write down terms for all

relaxation rates that are possible within the broken phase, both resonant and non-resonant.

For the numerical examples in section 4 however, we only include the contributions that

may become resonantly enhanced: the Higgsino-Bino (Higgsino-Wino) contribution to ΓH ,

resonantly enhanced for |µ| = M1 = 200GeV, (|µ| = M2); and the matter fermion contri-

butions to ΓM , which are resonantly enhanced since the thermal masses satisfy the relations

|mq −mt| ≪ T , |mq −mb| ≪ T and |mℓ −mτ | ≪ T .

To facilitate comparison with ref. [25], we note that we apply the slight changes of

notation Γ
eH,eV
H = Γh, ΓM (t, q) = (6/T 2)Γ−

t , ΓM (t̃, q̃) = (6/T 2)Γ−
et
.
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2.7 Thermal masses

The masses that appear in the expressions for the equilibration rates ΓY , ΓeV
, in the relax-

ation terms ΓH and ΓM and in the source terms S��CP
eH

, are understood to include thermal

corrections, which we take from ref. [24], assuming light right-handed stop, sbottom and

stau particles. While we treat the thermal masses as Dirac mass terms for fermions, strictly

speaking, the thermal masses characterize a modification of the dispersion relation only

and imply no chiral symmetry breaking in the symmetric phase. We provide a justification

of this procedure through a discussion of the numerical inaccuracies that are incurred in

section 2.10.

2.8 Diffusion constants

When generalizing the distribution functions fB and fF to be dependent also on the spatial

momentum p in an anisotropic way, it is possible to derive the Fick diffusion law

X = −DX∇X (2.64)

from kinetic theory, where Xµ = (X,X) denotes the number density current for any of the

particle species considered here. The quantity DX is the diffusion constant for the species

X and can be calculated from the moments of scattering matrix elements of X. For our

purposes, it is useful to recast the diffusion law (2.64) by boosting (non-relativistically) to

the frame where the bubble wall is at rest as

∂µX
µ = vw∂zX −DX∂

2
zX . (2.65)

The particular values that we use here for the diffusion constants are taken from ref. [21]

and are summarized in table 1 in section 4, where we present results from our numerical

studies. As a simplification, common diffusion rates for particles and sparticles are taken,

such that e.g. DQ = Dq = Deq. The physical interpretation of eqs. (2.64), (2.65) is sim-

ple: Within the plasma, a particle gets rescattered and undergoes a random walk. These

scatterings are more frequent for colored particles such as quarks than for particles that in-

teract through electroweak and non-gauge couplings only, such as the τ -lepton. Therefore,

DR is larger than DQ, which implies that τ -leptons diffuse farther away from the bubble

wall than quarks.

In ref. [21], the diffusion constants have been estimated using an incomplete set of

scattering matrix elements. In particular, it has been pointed out in ref. [39, 40], that

infrared sensitive t-channel processes have been neglected. In general, one should therefore

expect an order one inaccuracy within the results of ref. [21]. The results in ref. [39, 40]

apply however to gauge theories with massless fundamental fermions only, which is why

they cannot be applied directly to sfermions and to Higgs bosons. In order to quote a value

for comparison, from ref. [39, 40] we infer Dq = 4.7/T for six quark flavors, while from

ref. [21], we adaptDQ = Dq = Deq = 6/T . In order to achieve predictions of accuracy better

than order unity, it will be necessary to reevaluate the diffusion constants in the future.
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2.9 Boltzmann equations

We now present the full set of Boltzmann equations:

∂µt
µ = −Γ

(t,q)
M

(
t

kt
− q

kq

)
− Γ

(t,q,H1)
Y

(
t

kt
− q

kq
− H1

kH1

)
− Γ

(t,et)
eV

(
t

kt
− t̃

ket

)
(2.66a)

− Γ
(t,q,H2)
Y

(
t

kt
− q

kq
− H2

kH2

)
− Γ

(t,eq, eH)
Y

(
t

kt
− q̃

keq
− H̃

k eH

)
+ ΓssN5 ,

∂µt̃
µ = −Γ

(et,eq,H1)
Y

(
t̃

ket

− q̃

keq
− H1

kH1

)
− Γ

(et,eq,H2)
Y

(
t̃

ket

− q̃

keq
− H2

kH2

)
+ S��CP

et
(2.66b)

− Γ
(et,q, eH)
Y

(
t̃

ket

− q

kq
− H̃

k eH

)
− Γ

(t,et)
eV

(
t̃

ket

− t

kt

)
− Γ

(et,eq)
M

(
t̃

ket

− q̃

keq

)
,

∂µb
µ = −Γ

(b,q)
M

(
b

kb
− q

kq

)
− Γ

(b,q,H1)
Y

(
b

kb
− q

kq
+
H1

kH1

)
− Γ

(b,eb)
eV

(
b

kb
− b̃

keb

)
(2.66c)

− Γ
(b,q,H2)
Y

(
b

kb
− q

kq
+
H2

kH2

)
− Γ

(b,eq, eH)
Y

(
b

kb
− q̃

keq
+
H̃

k eH

)
+ ΓssN5 ,

∂µb̃
µ = −Γ

(eb,eq,H1)
Y

(
b̃

keb

− q̃

keq
+
H1

kH1

)
− Γ

(eb,eq,H2)
Y

(
b̃

keb

− q̃

keq
+
H2

kH2

)
+ S��CP

eb
(2.66d)

− Γ
(eb,q, eH)
Y

(
b̃

keb

− q

kq
+
H̃

k eH

)
− Γ

(b,eb)
eV

(
b̃

keb

− b

kb

)
− Γ

(eb,eq)
M

(
b̃

keb

− q̃

keq

)
,

∂µq
µ = −Γ

(t,q)
M

(
q

kq
− t

kt

)
− Γ

(b,q)
M

(
q

kq
− b

kb

)
− Γ

(q,eq)
eV

(
q

kq
− q̃

keq

)
(2.66e)

− 2ΓssN5 − Γ
(t,q,H1)
Y

(
q

kq
− t

kt
+
H1

kH1

)
− Γ

(t,q,H2)
Y

(
q

kq
− t

kt
+
H2

kH2

)

− Γ
(et,q, eH)
Y

(
q

kq
− t̃

ket

+
H̃

k eH

)
− Γ

(b,q,H1)
Y

(
q

kq
− b

kb
− H1

kH1

)

− Γ
(b,q,H2)
Y

(
q

kq
− b

kb
− H2

kH2

)
− Γ

(eb,q, eH)
Y

(
q

kq
− b̃

keb

− H̃

k eH

)
,

∂µq̃
µ = −Γ

(et,eq)
M

(
q̃

keq
− t̃

ket

)
−Γ

(eb,eq)
M

(
q̃

keq
− b̃

keb

)
−Γ

(q,eq)
eV

(
q̃

keq
− q

kq

)
−S��CP

et
− S��CP

eb
(2.66f)

− Γ
(et,eq,H1)
Y

(
q̃

keq
− t̃

ket

+
H1

kH1

)
− Γ

(et,eq,H2)
Y

(
q̃

keq
− t̃

ket

+
H2

kH2

)

− Γ
(t,eq, eH)
Y

(
q̃

keq
− t

kt
+
H̃

k eH

)
− Γ

(eb,eq,H1)
Y

(
q̃

keq
− b̃

keb

− H1

kH1

)

− Γ
(eb,eq,H2)
Y

(
q̃

keq
− b̃

keb

− H2

kH2

)
− Γ

(b,eq, eH)
Y

(
q̃

keq
− b

kb
− H̃

k eH

)
,

∂µτ
µ = −Γ

(τ,ℓ)
M

(
τ

kτ
− ℓ

kℓ

)
− Γ

(τ,ℓ,H1)
Y

(
τ

kτ
− ℓ

kℓ
+
H1

kH1

)
− Γ

(τ,eτ)
eV

(
τ

kτ
− τ̃

keτ

)
(2.66g)
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− Γ
(τ,ℓ,H2)
Y

(
τ

kτ
− ℓ

kℓ
+
H2

kH2

)
− Γ

(τ,eℓ, eH)
Y

(
τ

kτ
− ℓ̃

keℓ

+
H̃

k eH

)
,

∂µτ̃
µ = −Γ

(eτ,eℓ,H1)
Y

(
τ̃

keτ
− ℓ̃

keℓ

+
H1

kH1

)
− Γ

(eτ ,eℓ,H2)
Y

(
τ̃

keτ
− ℓ̃

keℓ

+
H2

kH2

)
+ S��CP

eτ (2.66h)

− Γ
(eτ ,ℓ, eH)
Y

(
τ̃

keℓ

− ℓ

kℓ
+
H̃

k eH

)
− Γ

(τ,eτ)
eV

(
τ̃

keτ
− τ

kτ

)
− Γ

(eτ ,eℓ)
M

(
τ̃

keτ
− ℓ̃

keℓ

)
,

∂µℓ
µ = −Γ

(τ,ℓ)
M

(
q

kq
− ℓ

kℓ

)
− Γ

(ℓ,eℓ)
eV

(
ℓ

kℓ
− τ̃

keτ

)
(2.66i)

− Γ
(τ,ℓ,H1)
Y

(
ℓ

kℓ
− ℓ

kℓ
− H1

kH1

)
− Γ

(τ,ℓ,H2)
Y

(
ℓ

kℓ
− τ

kτ
− H2

kH2

)

− Γ
(eτ ,ℓ, eH)
Y

(
ℓ

kℓ
− τ̃

keτ
− H̃

k eH

)
,

∂µℓ̃
µ = −Γ

(eτ,eℓ)
M

(
ℓ̃

keℓ

− τ̃

keτ

)
− Γ

(ℓ,eℓ)
eV

(
ℓ̃

keℓ

− ℓ

kℓ

)
− S��CP

eτ (2.66j)

− Γ
(eτ ,eℓ,H1)
Y

(
ℓ̃

keℓ

− τ̃

keτ
− H1

kH1

)
− Γ

(eτ ,eℓ,H2)
Y

(
ℓ̃

keℓ

− τ̃

keτ
− H2

kH2

)

− Γ
(τ,eℓ, eH)
Y

(
ℓ̃

keℓ

− τ

kτ
− H̃

k eH

)
,

∂µH
µ
i = −Γ

(t,q,Hi)
Y

(
Hi

kHi
− t

kt
+

q

kq

)
− Γ

(et,eq,H1,2)
Y

(
Hi

kHi
− t̃

ket

+
q̃

keq

)
(2.66k)

− Γ
(b,q,Hi)
Y

(
Hi

kHi
+

b

kb
− q

kq

)
− Γ

(eb,eq,H1,2)
Y

(
Hi

kHi
+

b̃

keb

− q̃

keq

)

− Γ
(τ,ℓ,Hi)
Y

(
Hi

kHi
+

τ

kτ
− ℓ

kℓ

)
− Γ

(eτ ,eℓ,H1,2)
Y

(
Hi

kHi
+

τ̃

keτ
− ℓ̃

keℓ

)

− Γ
(Hi, eH)
eV

(
Hi

kHi
− H̃

k eH

)
− Γ

(H1,H2)
H

(
Hi

kHi

)
, i = 1, 2 ,

∂µH̃
µ = −Γ

(t,eq, eH)
Y

(
H̃

k eH

− t

kt
+

q̃

keq

)
− Γ

(et,q, eH)
Y

(
H̃

k eH

− t̃

ket

+
q

kq

)
(2.66l)

− Γ
(b,eq, eH)
Y

(
H̃

k eH

+
b

kb
− q̃

keq

)
− Γ

(eb,q, eH)
Y

(
H̃

k eH

+
b̃

keb

− q

kq

)

− Γ
(τ,eℓ, eH)
Y

(
H̃

k eH

+
τ

kτ
− ℓ̃

keℓ

)
− Γ

(eτ ,ℓ, eH)
Y

(
H̃

k eH

+
τ̃

keτ
− ℓ

kℓ

)

− Γ
( eH,eV )
H

(
H̃

k eH

)
− Γ

(H1, eH)
eV

(
H̃

k eH

− H1

kH1

)
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− Γ
(H2, eH)
eV

(
H̃

k eH

− H2

kH2

)
+ S��CP

eH
,

∂µq
µ
i = −Γ

(qi,eqi)
eV

(
qi
kqi

− q̃i
keqi

)
− 2ΓssN5 , i = 1, 2 , (2.66m)

∂µq̃
µ
i = −Γ

(qi,eqi)
eV

(
q̃i
keqi

− qi
kqi

)
, i = 1, 2 , (2.66n)

∂µu
µ
i = −Γ

(ui,eui)
eV

(
ui
kui

− ũi
keui

)
+ ΓssN5 , i = 1, 2 , (2.66o)

∂µũ
µ
i = −Γ

(ui,eui)
eV

(
ũi
keui

− ui
kui

)
, i = 1, 2 , (2.66p)

∂µd
µ
i = −Γ

(di,edi)
eV

(
di
kdi

− d̃i
kedi

)
+ ΓssN5 i = 1, 2 , (2.66q)

∂µd̃
µ
i = −Γ

(di,edi)
eV

(
d̃i
kedi

− di
kdi

)
i = 1, 2 . (2.66r)

The rate for strong sphaleron transitions is given by [20, 44, 45]:

Γss = 16κs α
4
s T (2.67)

with κs ≃ 1, and

N5 ≡
3∑

i=1

(
2 qi
kqi

− ui
kui

− di
kdi

)
. (2.68)

In order to facilitate a comparison with results appearing previously in the literature,

we give the our values for the statistical factors in the massless limit: kq = keq/2 = 6,

kuR = kdR = keuR/2 = kedR
/2 = 3, kH1 = kH2 = 4 and k eH

= 4.

Before solving the system of Boltzmann equations in sections 3, 4, we conclude the

present section by considering two issues related to the equilibration rates ΓY,eV derived

above. First, we consider the impact on these rates from a more rigorous treatment of

massless fermion propagators in a thermal plasma. Second, we present a numerical com-

parison of ΓY and ΓeV
rates to demonstrate that one in general does not have ΓeV

≫ ΓY .

2.10 Thermal fermion propagators and particle/hole modes

For three-body processes involving scalars and fermions with masses of order T , the forms

for the Greens functions given in eqs. (2.9), (2.10) (and the fermion analogs) suffice for the

computation of the three-body rates. In the case of fermions that are massless (or nearly

massless) at zero temperature, the structure of the thermal Greens functions becomes far

more complicated. The renormalized fermionic spectral functions contain additional poles

— so called “hole modes” — generated by mixing between single and multiparticle states

in the thermal bath [46, 47]. The resulting propagators are given by [25, 48]

Sλ(x, y;µ)=

∫
d4k

(2π)4
e−ik·(x−y)gλF (k0, µ)

[
γ0−γ ·k̂

2
ρ+(k0,k, µ)+

γ0+γ ·k̂
2

ρ−(k0,k, µ)

]
,

(2.69)
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where k̂ is the unit vector in the k direction, and

ρ+(k0,k, µ) = i

[
Zp(k, µ)

k0 − Ep(k, µ)
− Zp(k, µ)∗

k0 − Ep(k, µ)∗
(2.70)

+
Zh(k,−µ)∗

k0 + Eh(k,−µ)∗
− Zh(k,−µ)

k0 + Eh(k,−µ)
+ F (k∗0 , k, µ)∗ − F (k0, k, µ)

]
,

and

ρ−(k0,k, µ) = [ρ+(−k0∗,k,−µ)]∗ . (2.71)

Here, Ep(k, µ) and −Eh(k,−µ)∗ are the two (complex) roots (in k0) of

k0 − k +D+(k0, k, µ) + iǫ (2.72)

where iD±(k0, k, µ) are contributions to the inverse, retarded propagator proportional to

(γ0 ∓ γ ·k̂)/2 arising from interactions. The function F (k0, k, µ) gives the non-pole part of

the propagator, and k = |k|. The mass of these particle/hole excitations is neither zero,

nor equal to the standard thermal mass (denoted mT ); rather it is a k-dependent function

given by

m2
p,h(k) = Re [Ep,h(k)]2 − k2 . (2.73)

For example, the mass of the particle mode obeys

mp → mT for k → 0 (2.74)

mp → 2mT for k ≫ T . (2.75)

The residue functions Zp(k, µ) and Zh(k, µ) govern the relative importance of particle

and hole contributions to the thermal propagators. In the absence of interactions, one

has Zp(k, µ) = 1 and Zh(k, µ) = 0, in which case Sλ(x, y;µ) takes on the form given in

eqs. (2.11)–(2.15). However, the departure from these limits is not perturbative in the

strength of the interaction (e.g., the gauge coupling g), but rather depends strongly on the

magnitude of the three-momentum, k. At k = 0 one has Zp = Zh = 1/2, while for k or order

the temperature or thermal mass, one has Zh/Zp ≪ 1. In earlier work [25], we studied the

impact of the particle-hole structure of Sλ(x, y;µ) on fermionic contributions to the CP-

violating source terms and CP-conserving relaxation rates generated by interactions with

the spacetime varying Higgs vevs. We found that the gaugino and Higgsino contributions

were dominated by large momenta (of order the gaugino and Higgsino masses), leading

to negligible effects associated with the hole modes. In contrast, the hole modes generate

non-negligible contributions to the quark relaxation rates.

Here, we analyze the impact of hole modes on the three-body rates since it is not

a priori apparent that the loop integrals are dominated by momenta in the regime for

which Zh/Zp ≪ 1. To that end, we consider one particular three-body process involving

the massless fermion q, the massive fermion g̃, and the scalar q̃. We compute the three-

body rate Γ
(q,eq)
eV

generated by the graph of figure 1a but using eq. (2.69) for the q Green’s

function. (Although we are choosing a particular interaction, this discussion is generic to

any process involving one massless fermion, one massive fermion, and one massive scalar.)
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Figure 2. We plot Γ
(q,eq)
eV

(gluino-only) as a function of meqL
. The solid and dotted lines denote,

respectively, the particle and hole (×10) contributions to this rate. The dashed line indicates Γ
(q,eq)
eV

calculated using free thermal Green’s functions with a thermal mass, corresponding to the last term

in eq. (2.58c).

For illustrative purposes, we include only the gluino contribution, neglecting here those

contributions from electroweak gauginos.

In figure 2, we show the resulting meq-dependence of Γ
(q,eq)
eV

for meg = 200 GeV and

T = 100 GeV. The solid and dotted curves show, respectively, the particle and hole (×10)

contributions to Γ
(q,eq)
eV

, calculated using the full quasiparticle Green’s function given in

eqs. (2.69)–(2.71), in the limit of zero thermal widths. The hole contribution is much

smaller than the particle contribution because the process is dominated by momenta k & T ;

for these momenta, we always have Zh . 10−3.

For comparison, the dashed curve in figure 2 shows Γ
(q,eq)
eV

calculated using free Green’s

functions (2.15) with the inclusion of thermal masses. The agreement between solid and

dashed curves in generally quite good; the majority of the discrepancy is due to the fact

that Zp 6= 1. At meqL > 600 GeV, the rate Γ
(q,eq)
eV

is dominated by quasi-particles with

momenta k > (few)× 100 GeV, for which Zp & 0.95; consequently, the agreement between

solid and dashed curves is better than ∼ 95%. For meqL < 100 GeV, the rate is dominated

by quasi-particles with momenta k ∼ 100 GeV, for which Zp ∼ 0.8; consequently, there is a

20% discrepancy between solid and dashed curved. In the present work, we compute Γ
(q,eq)
eV

and all other three-body rates using free Green’s functions with thermal masses, rather

than the full quasi-particle Green’s functions. Since these quasi-particle effects provide

only small corrections to the three-body rate, we do not consider the more complicated

case of two massless fermions and one massive scalar.

3 Transport equations and YB: analytic study

In this section, we present semi-analytical approximate solutions to the Boltzmann equa-

tions. In addition to the discussion that has already been presented in refs. [23, 24], we pay

particular attention to the relaxation of particular charge densities towards superequilib-

rium in the diffusion wake ahead of the bubble wall. For this purpose, we first identify the

condition that determines whether or not a particular interaction rate is sufficiently fast to
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lead to chemical equilibrium. We then show that fast supergauge interactions rates are a

sufficient, but not necessary, condition for superequilibrium. Indeed, it turns out that the

combined effect of Yukawa and triscalar interactions can also lead to superequilibrium for

particular species.

3.1 Conditions for superequilibrium

Having specified the relevant interactions during EWB, we discuss here under which circum-

stances a particular interaction maintains chemical equilibrium and when this equilibrium

is physically relevant. As an example, we consider supergauge interaction rates in the

transport equations for q and q̃:

∂νq
ν = − Γ

(q,eq)
eV

(
q

kq
− q̃

keq

)
+ . . . (3.1)

∂ν q̃
ν = − Γ

(q,eq)
eV

(
q̃

keq
− q

kq

)
+ . . . (3.2)

For the moment, we focus only on the gaugino interactions that maintain chemical equi-

librium between q and q̃. Expressing these two equations in terms of chemical potentials,

rather than charge number densities, and taking the difference, we have

[
d

dt
−Dq∇2

]
(µq − µeq) = − Γ

(q,eq)
eV

(
1

kq
+

1

keq

)
(µq − µeq) + . . . (3.3)

Formally, chemical equilibrium corresponds to the equality of chemical potentials.

Eq. (3.3) implies that the difference of chemical potentials, µq − µq̃, will relax to zero

with a characteristic time scale

τeq ≡
[
Γ

(q,eq)
eV

(
1

kq
+

1

keq

)]−1

. (3.4)

Consider now the presence of a density q (e.g. induced by decays H̃† → q + t̃∗). In

general, it will equilibrate with q̃ on the time scale τeq, so long as the corresponding reaction

q + Ṽ ↔ q̃ is kinematically allowed. In the limit that gauginos become heavy compared to

the temperature, we expect this equilibration process to be Boltzmann suppressed, that is:

τeq → ∞ , meV
→ ∞ . (3.5)

This suppression of the equilibration rate arises as one would expect because the gauginos

decouple from the plasma. On the other hand, taking the limit meq → ∞ leads to

τ (eq,q)
eq ∝ 1

meq
−→ 0 . (3.6)

This result is somewhat counter intuitive, since the q̃ density becomes Boltzmann sup-

pressed for large meq. However, the corresponding chemical potential is proportional to

q̃/keq, and keq also decreases with larger meq. As a result, the chemical potentials of a parti-

cle and its superpartner may equilibrate quickly in the presence of gauginos, even when the
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sparticle mass is much larger than the temperature. This is because the sparticle chemical

potential can adapt to the particle chemical potential by a small change in the physical

sparticle density.

From the standpoint of the generation of nleft, it is important to analyze the converse

situation, namely, how the presence of a heavy superpartner affects the chemical poten-

tial, and hence the number density, of the lighter SM particles through the network of

transport equations. From our numerical studies, we find that when a (s)particle (e.g. q̃),

becomes heavy compared to the temperature, its transport equation effectively decouples

from the system of transport equations. Consequently, even though a process of chemical

equilibration involving this heavy (s)particle may take place quickly, its occurrence will be

irrelevant for the generation of the lighter particle densities. As we will see below, this

decoupling effect can lead to “bottlenecks” in a chain of reactions that might otherwise

lead to chemical equilibrium and significant effects on particle number densities.

With these considerations in mind, we will consider the equilibration time scales as in

eq. (3.4) to be physically relevant only when the (s)particles involved are not too heavy

compared to the temperature. In this regime, the corresponding k-factors are never too

suppressed with respect to their values in the massless limit. When more than two particles

are involved in the equilibrating reaction, the corresponding equilibration rate will go like

τ−1
eq ∼ Γ ×

∑

j

1

kj
. (3.7)

For purposes of determining the criteria for various reactions to reach equilibrium on time

scales short compared to other processes, we will take the longest possible time scale for

each reaction by retaining only the minimum value of the 1/kj appearing above:

τ−1
eq = Γ(x1,x2,...) min

i

{
1

kxi

}
. (3.8)

A sufficient condition for determining whether chemical equilibrium is maintained during

the process of diffusion ahead of the bubble wall is then

τeq < τdiff (3.9)

where

τdiff ≡ D̄

v2
w

(3.10)

is the diffusion time scale, with effective diffusion constant D̄ defined below. If τeq > τdiff,

then an asymmetry between chemical potentials will diffuse ahead of the moving bubble

wall faster than it will equilibrate away; therefore, equilibrium will be broken (unless there

is another interaction fast enough to maintain equilibrium). When we evaluate all the

interaction rates in eqs. (2.66a)–(2.66r) numerically in section 4, we will see which rates

satisfy τdiff/τeq > 1 so that they maintain chemical equilibrium. (We note parenthetically

that the Hubble rate H ∼ 10 × T 2/Mpl is far too small to be relevant for EWB transport

dynamics). In our previous papers [23, 24], we have taken τ−1
eq = Γ(x1,x2,...) for simplicity.
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The defintition (3.8) corresponds to a weaker requirement in the sense that τeq goes to zero

in the case when all masses of the particles involved in the reaction are much larger than T ,

Now, one might expect that a sufficient condition for breaking superequilibrium is

simply eq. (3.5). This expectation is false, as we can see from the following argument.

Suppose all gaugino interaction rates vanished, while the Yukawa rates were infinitely

large. Top quark Yukawa interactions in chemical equilibrium lead to the following relations

among chemical potentials:

µq + µH1 = µt (3.11a)

µq + µH2 = µt (3.11b)

µeq + µH1 = µet (3.11c)

µeq + µH2 = µet (3.11d)

µq + µ eH
= µet (3.11e)

µeq + µ eH = µt (3.11f)

Using these relations, one has

µq = µeq , µt = µet , µH1 = µH2 = µ eH
. (3.12)

Note that the interaction leading to (3.11b) is suppressed by the Higgs mixing parameter

sinα. However, eqs. (3.12) follow from eqs. (3.11) even when eq. (3.11b) is excluded.

Analogously, when the interactions mediated by bottom and tau Yukawa interactions are

fast, it additionally follows that

µb = µeb
, µℓ = µeℓ

, µτ = µeτ . (3.13)

This implies that even in the limit meV → ∞, where supergauge interactions are sup-

pressed, superequilibrium can be maintained through Yukawa interactions alone. Fast

supergauge interactions are a sufficient condition for superequilibrium, but not a necessary

one in the presence of other interactions. Obviously, this argument does not apply to the

first and second generation (s)quark and (s)lepton sectors, where the Yukawa rates are

much too small to enforce superequilibrium in the absence of fast supergauge interactions.

But also third generation (s)quarks and (s)leptons may not reach superequilibrium in

the case when one or more of the (s)quark and (s)lepton species are very heavy. Then,

particular Yukawa and triscalar rates can be small such that τeq defined according to

eq. (3.8) fails the criterion τeq < τdiff . As discussed above, this occurs because the heavy

(s)quarks and (s)leptons can consitute a bottleneck for the transfer of the Higgsino charge

to the non-supersymmetric particles. As a consequence, not all of the relations (3.11) need

to be satisfied at the same time and superequilibrium (3.12) does not follow. We encounter

an example for such a situation in section 4.3.

To summarize, we identify two equilibration time-scales:

• The time-scale τ q,eqeq in eq. (3.4) is useful to show that superequilibrium is maintained

in the presence of light gauginos. In the case of a heavy q̃, the condition µq = µeq is

maintained due to the smallness of keq, but it is of little physical significance since the

density of q̃ is small.
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• The scale τeq in eq. (3.8) is useful to formulate sufficient conditions for equilibration.

When τeq > τdiff , there may or may not be a bottleneck preventing the establishment

of chemical equilibrium on diffusion time-scales. Whether chemical equilibrium is

maintained depends in this situation on the particular masses and interaction rates

important for the network of reactions.

3.2 Analytical approximation

Before we explore numerical solutions to the diffusion equations, we briefly recapitulate

some salient points of the analytical approximation that has been presented in [23, 24].

First suppose that the relations (3.12), (3.13) hold, because of fast supergauge interactions

or fast Yukawa and triscalar interactions. A relaxation of this assumption, among other

things, is numerically studied in section 4.

Then, it is convenient to introduce common particle and superparticle densities as

x

kx
=
x̃

kex
=

X

kX
, X = x+ x̃ , kX = kx + kex ,

for x ∈ {qi, ui, di, ℓ, τ ≡ r}, i ∈ {1, 2, 3} ; (3.14a)

Hi

kHi
=
H̃

k eH

=
H

kH
, for i ∈ {1, 2} , H = H̃ +H1 +H2 , kH = k eH

+ kH1 + kH2 .

(3.14b)

Adding the equations for particles and their superpartners then immediately reduces the

system of Boltzmann equations (2.66) to the more compact system of equations presented

in ref. [24] that consists of six equations only.

The next step towards an analytical solution is to realize that the sums of chemical

potentials that multiply the Yukawa, triscalar5 and strong sphaleron rates can simulta-

neously be set to zero, as these rates are typically faster than the diffusion rate and the

corresponding reactions reach equilibrium before densities can diffuse away. Explicitly,

when imposing

Q

kQ
+
H

kH
− T

kT
=

Q

kQ
− H

kH
− B

kB
=

L

kL
− H

kH
− R

kR
= 0 , (3.15)

in conjunction with approximate baryon number conservation (weak sphaleron transitions

are out of equilibrium on diffusion time-scales Γws ≪ τ−1
diff), we can use these relations to

eliminate all number densities except for H from the Boltzmann equations through

Q = κQH =
kQ
kH

kB − kT
kB + kQ + kT

H , (3.16a)

T = κTH =
kT
kH

2kB + kQ
kB + kQ + kT

H , (3.16b)

B = κBH = −kB
kH

2kT + kQ
kB + kQ + kT

H , (3.16c)

5We assume in this section that we are in a parametric region, where t-, b- and τ -Yukawa and triscalar

rates are fast.
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L = κLH = ϑL
kL
kH

kRDR

kLDL + kRDR
H . (3.16d)

Here, we have defined

ϑL =

{
1 if Γyτ ≫ Γdiff

0 if Γyτ ≪ Γdiff
. (3.17)

If neither of these inequalities is amply fulfilled, the analytical approximation will not be

accurate. Similarly, forDR 6= DL, eq. (3.16d) is in conflict with the fact that the densities R

and L diffuse at a different rate ahead of the wall (unlike for the (s)quarks, which we assume

here to diffuse at the common rate DQ, that is dominated by strong interactions). However,

since DR ≫ DL, the the relation (3.16d) is not a bad approximation compared to other un-

certainties in the analytical calculation. This is because the right-handed (s)leptons diffuse

on much larger distances away from the bubble wall, such that their local density can be ne-

glected. Note that global lepton number conservation
∫
dz(L+R) = 0 holds, when neglect-

ing weak sphaleron transitions. For more details on this point, see the discussion in ref. [24].

Another feature of eqs. (3.16) is that these relations imply that the contribution from

third generation quarks to the factor N5 that multiplies the strong sphaleron rate, Γss,

vanishes. Since the CP -violating sources, triscalar couplings, and Yukawa interactions

for the first two generation (s)fermions are highly suppressed by their Yukawa couplings,

there exists no independent source for their densities apart from their coupling to the

third generation via the strong sphalerons. Consequently, the vanishing third generation

contribution to N5 implies that no chiral charge densities within the first two generations

are generated [23, 24]. This situation differs substantially from from that of earlier studies,

where bottom Yukawa couplings are neglected [20, 25], and it leads to significantly different

results for YB and its dependence on the MSSM parameters.

Applying the eliminations (3.16), the resulting diffusion equation is

vwH
′ − D̄H ′′ = −Γ̄H + S̄ , (3.18)

and in the symmetric phase, ahead of the bubble wall, its relative accuracy is O(Γdiff/ΓY ).

In this equation, the effective diffusion constant, source terms and damping rates are given

by [24]

D̄ =
DH +DQ(κT − κB) +DLϑLκL

1 + κT − κB + ϑLκL
, (3.19a)

Γ̄ =
Γh + Γmt + Γmb + ϑLΓmτ
kH(1 + κT − κB + ϑLκL)

, (3.19b)

S̄ =
S��CP

eH
+ S��CP

eH
− S��CP

eb
+ ϑLS��CP

eτ

1 + κT − κB + ϑLκL
. (3.19c)

Using eqs. (3.16) The left handed fermionic charge density, that couples to the weak

sphaleron is related to H as

nleft =

(
kq
kH

kB − kT
kB + kQ + kT

+ ϑL
kℓ
kH

kRDR

kLDL + kRDR

)
H . (3.20)
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In the symmetric phase, where the sources and relaxation terms are vanishing, the

Higgs-Higgsino density is then given by

H = Aevwz/D̄ . (3.21)

Assuming that the source terms are negligible for z < −Lw/2, and that the relaxation

terms have the particular form Γ̄(z) = θ(z)Γ̄, the normalization A can be found as

A =

∞∫

0

dy S̄(y)
e−γ+y

D̄γ+
+

0∫

−Lw/2

dy S̄(y)

(
γ−
vwγ+

+
e−vwy/D̄

vw

)
, (3.22)

where

γ± =
1

2D̄

(
vw ±

√
v2
w + 4Γ̄D̄

)
. (3.23)

These analytic results, which have been discussed extensively in refs. [23, 24], suggest

qualitative features one should expect from the full numerical solutions that we present in

section 4.

First, the presence of important bottom Yukawa interactions effectively quenches the

contributions from the first and second generation quarks to nleft. This quenching arises in

this regime because Yukawa-induced equilibrium involving third generation quarks leads to

vanishing third generation chiral charge. Non-vanishing first and second generation quark

densities arise only as required to maintain strong sphaleron equilibrium and thus, in this

limit, also vanish. The resulting expression for nleft, given in eq. (3.20)), depends only on

quantities arising from third generation left-handed fermions.

Second, the efficiency with which the non-vanishing H density — induced by the corre-

sponding CP-violating source terms for Higgsinos — converts to nleft depends critically on

the k-factors associated with the right-handed third generation sfermions. The combination

of Yukawa-induced equilibrium, superequilibrium, and local baryon number conservation

implies that the third generation LH quark density induced by H depends on kB − kT . In

the limit that the RH top and bottom squarks are degenerate, this contribution will vanish,

while for a non-degenerate spectrum, the sign of this contribution will depend on which

of the two squarks is heavier. The k-factor dependence of the third generation LH leptons

is more complicated since the LH and RH sleptons may diffuse at different rates. In the

illustrative limit of equal diffusion constants for the two chiral species, the lepton contribu-

tion depends on the geometric mean of the two k-factors. If either the LH or RH sleptons

become heavy compared to the temperature, the corresponding k-factor is suppressed, sig-

naling a decoupling of the slepton from the plasma and quenching the lepton contribution

to nleft. Note that the sign of the lepton and bottom quark contributions are both opposite

to that of the top quark contribution, implying that neglect of the former can lead to an

overestimate of nleft — and, thus, of YB — compared to the result when they are included.

In the following discussion, we will see how these features emerge from the full numer-

ical solutions to the coupled transport equations in regions of parameter space where the

corresponding assumptions behind the analytic treatments are valid. We will also identify

regions wherein these assumptions break down yet some of the qualitative features persist,

as well as regions wherein we find significant departures.
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T 100Gev µ 200GeV g1 0.357 γt,et = γ
b,eb

0.5T

vw 0.05 MA 200GeV g2 0.640 γτ,eτ 0.003T

Lw 0.25/T MZ 91GeV g3 1.243 γ eH
0.025T

vH(T ) 125Gev M1 200GeV At,b,τ 300GeV γfW
0.065T

DH 110/T M2 550GeV tanβ 15 γ eB 0.003T

DQ 6/T M2
et

−(70GeV)2

DL 100/T M2
eb

(500GeV)2

DE 380/T M2
eτ (100GeV)2

Table 1. Input parameters at the benchmark point. The masses for supersymmetric particles that

do not occur in this table have been chosen to be 2 TeV, such that they effectively deccouple.

4 Transport equations and YB: numerical results

We numerically solve the full system of Boltzmann eqs. (2.66) in the presence of finite

ΓṼ ,ΓY ,Γss. Initially, we focus on one particular benchmark point, which is motivated

from the requirement of a strong first order phase transition within the MSSM and for

which our analytical approximations are valid (section 4.1). Then, we explore regions of

smaller tan β, where the analytical approximations break down because down-type Yukawa

interactions do not equilibrate on diffusion time-scales (section 4.2). We also investigate

how robust the assumption of supergauge equilibrium is, in particular whether it can be

maintained even when gaugino interactions are quenched (section 4.3). Technical details

on how we obtain our numerical solutions are given in appendix A.

4.1 Supergauge and Yukawa interactions in equilibrium

First, we present a numerical solution for a particular point in parameter space. This point

is chosen based on the following criteria:

• it is motivated by existing studies of EWB within the MSSM,

• there is a reasonable agreement between analytical approximations and numerical

solutions,

• the results share some qualitative key features with the scenarios recently presented

in refs. [23, 24].

The set of parameters that we choose is given in table 1. From these input parameters,

we derive the parameters appearing in the Boltzmann equations (2.66) in the following way:

• The squark and slepton mass parameters in table 1 are understood to be evaluated

in the symmetric phase and without thermal corrections. We indicate this by the

use of a capital M . The corresponding quark and lepton masses in the symmetric

phase without thermal correction are zero. In addition, we derive the the masses of

the Higgs boson eigenstates from MZ and MA as explained in section 2.2, where we

take account of the thermal corrections that are summarized in ref. [24].
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• The source and damping terms are computed following [25, 26], as explained in detail

in section 2.6. Additional input parameters here are the thermal widths of some

particles X, which we denote as γX . The particular values we adopt are again given

in table 1. They are taken from refs. [50, 51] or motivated by the discussion therein.

As mentioned above, we have chosen the mass parameters such that they are favorably

disposed toward the viability of EWB in the MSSM. The light t̃R provides a strong first-

order phase transition [4, 52, 53]. The heavy q̃ is needed to increase the mass of the lightest

Higgs boson beyond LEP II constraints. Making the first and second generation squarks

heavy suppresses one-loop contributions to EDMs and precision electroweak observables.

As a consequence of the large mass of q̃, there is wide agreement that EWB in the

MSSM is viable only for CP -violation in the Higgsino/gaugino sector and only close the

resonance region of M1 ∼ |µ| (or M2 ∼ |µ|), and not from the quark/squark sector.

Consequently, we choose M1 = |µ| for our benchmark point to maximize the Higgsino

CP -violating source. While we calculate our CP -violating sources as per ref. [25, 26],

there is still some disagreement about the magnitude and parametric dependence of S��CP
eH

,

cf. [30, 31, 33]. However, in all of the present analysis, we keep S��CP
eH

fixed, as our emphasis

is on the effects CP -conserving transport coefficients for a given CP -violating source.

Therefore, our present work can be adapted to other calculations of S��CP
eH

simply by an

appropriate rescaling, since all particle densities and the BAU scale linearly with S��CP
eH

.

In addition, following refs. [30, 54], we take the Higgs vev profiles to be

v(z) =
1

2
vH(T )

(
1 + tanh

(
2α

z

Lw

))
, (4.1)

β(z) = β0(T ) − 1

2
∆β

(
1 − tanh

(
2α

z

Lw

))
, (4.2)

with α = 3/2, which provide an accurate analytic approximation to profiles obtained

numerically in ref. [37]. We follow refs. [25, 26] in our calculation of CP -violating sources

and CP -conserving relaxation rates for quarks and Higgsinos. To facilitate comparison to

other work, we provide the explicit numerical values for these results:

S��CP
eH

≃ −9.4 GeV × sinφµ vw β
′(z) v(z)2 , (4.3a)

Γ
( eH,eV )
H ≃ 1.4 × 10−2 GeV−1 × v(z)2 , (4.3b)

Γ
(t,q)
M ≃ 6.2 × 10−3 GeV−1 × y2

t vu(z)
2 , (4.3c)

Γ
(b,q)
M ≃ 6.3 × 10−3 GeV−1 × y2

t vu(z)
2 , (4.3d)

Γ
(τ,ℓ)
M ≃ 5.0 × 10−5 GeV−1 × y2

t vu(z)
2 . (4.3e)

As discussed earlier, we neglect Γ
(et,eq)
M and Γ

(H1,H2)
H , the relaxation rates for squarks and

Higgs bosons, respectively; we defer a calculation of these rates to future study. Neglecting

these relaxation rates will not have a large impact upon the final BAU to the extent that

(a) our analytical arguments from section 3 hold true, and (b) these rates are non-resonant

and therefore much smaller than the relaxation rates for Higgsinos and quarks that we have
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included. The rates Γ
(et,eq)
M ,Γ

(H1,H2)
H affect the BAU only through Γ̄, which itself depends on

the sum of all relaxation rates (3.19b):

Γ̄ ∝ Γ
(et,eq)
M + Γ

(t,q)
M + Γ

( eH,eV )
H + Γ

(H1,H2)
H . (4.4)

Therefore, a proper inclusion of squark and Higgs boson relaxation rates would give only

an O
[(

Γ
(et,eq)
M + Γ

(H1,H2)
H

)
/
(
Γ

(t,q)
M + Γ

( eH,eV )
H

)]
correction to the analysis offered here.

The degree to which we should expect an agreement between analytical and numerical

solutions can be inferred from table 2, where we show each of the Yukawa and supergauge

rates for our benchmark scenario. As we noted in section 3, the appropriate sufficient

condition that ensures that a particular rate leads to chemical equilibrium is τdiff/τeq > 1.

In the the second column of table 2, we compute τdiff/τeq, where τeq is determined through

dividing the corresponding rate from the first column by the appropriate k-factor, as per

eq. (3.8). The three body rates in table 2 are all calculated following the methods described

in sections 2.3 and 2.4, with one exception: Γ
(t,q,H)
Y . After including thermal corrections,

we have mt ≈ mq ≈ 65GeV and mH1 ≈ 50GeV, such that on-shell scatterings of these

three particles are kinematically forbidden. Within the MSSM, we cannot alleviate this

kinematic suppression, since a negative mass square for the Higgs boson needs to be present

in the Lagrangian in order to ensure electroweak symmetry breaking. Since the rate Γ
(t,q,H)
Y

plays a pivotal role in the network Boltzmann equations (2.66) that describe diffusion, and

it is in general non-zero due to the off-shell effects and four body contributions, we treat

it as an exception. From ref. [21], we take

Γ
(t,q,H)
Y = 0.129

g2
3

4π
T , (4.5)

which is an estimate of the four-body contributions. We re-emphasize however that a more

detailed analysis of the four body and off-shell contributions in the future would be desir-

able.

In figure 3, we display the numerical results for the number densities of selected species

and compare them to the analytical predictions according to section 3. Numerically, the

diffusion time scale is

τdiff ≡ D̄

v2
w

≃ 2.0 × 102 GeV−1 ∼ 10−22 s. (4.6)

Since τdiff/τeq > 1 for those rates in table 2 that do not involve the ultraheavy sfermions q̃

and ℓ̃ and that are not suppressed by sinα, our numerical solutions match our analytical

expectations to a good extent. Regarding the analytical solutions, the following additional

comments are in order:

• The overall normalization of the analytic estimate is slightly larger than for the

numerical result. This is because the damping rates in the broken phase are larger

than the equilibration rates, and therefore the error of the analytic approximation is

not under control for z >
∼ 0.
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Rate Benchmark Value (GeV) τdiff/τeq

Γ
(H1, eH)
eV

5.3 × 10−1 3.4 × 10

Γ
(H2, eH)
eV

3.0 × 10−1 2.6 × 10

Γ
(Q, eQ)
eV

1.8 × 10−5 6.4 × 10−4

Γ
(t,et)
eV

3.3 × 10−1 1.6 × 10

Γ
(b,eb)
eV

3.0 × 10−2 2.1

Γ
(ℓ,eℓ)
eV

6.7 × 10−6 6.7 × 10−4

Γ
(τ,eτ)
eV

1.6 × 10−1 2.8 × 10

Γ
(et, eQ,H1)
Y 7.6 × 10−7 3.6 × 10−5

Γ
(eb, eQ,H2)
Y 9.3 × 10−8 2.1 × 10−5

Γ
(eτ ,eℓ,H2)
Y 1.8 × 10−8 3.0 × 10−6

Γ
(et, eQ,H2)
Y 3.3 × 10−7 1.6 × 10−5

Γ
(eb, eQ,H1)
Y 4.2 × 10−8 2.7 × 10−6

Γ
(eτ ,eℓ,H1)
Y 8.1 × 10−9 5.2 × 10−7

Γ
(et,Q, eH)
Y 8.0 2.8 × 102

Γ
(eb,Q, eH)
Y 5.9 × 10−1 2.1 × 10

Γ
(eτ ,ℓ, eH)
Y 8.9 × 10−2 7.6

Γ
(t,Q,H1)
Y 2.3 8.2 × 10

Γ
(b,Q,H2)
Y 9.6 × 10−1 3.4 × 10

Γ
(τ,ℓ,H2)
Y 1.4 × 10−1 1.4 × 10

Γ
(t,Q,H2)
Y 1.8 × 10−2 6.5 × 10−1

Γ
(b,Q,H1)
Y 0 0

Γ
(τ,ℓ,H1)
Y 3.8 × 10−5 2.4 × 10−3

Γ
(t, eQ, eH)
Y 3.3 × 10−5 2.3 × 10−3

Γ
(b, eQ, eH)
Y 4.4 × 10−6 3.0 × 10−4

Γ
(τ,eℓ, eH)
Y 7.9 × 10−7 6.8 × 10−5

Γss 3.7 × 10−1 1.3 × 102

Table 2. Yukawa, strong sphaleron, and supergauge interaction rates for the benchmark parameters

and comparison to the diffusion time scale.

• Sufficiently far ahead of the bubble wall, the prediction for the ratios of the particular

charge densities is accurate. In this region, the analytical approximation is well under

control. However, nleft close to the bubble wall contributes significantly to YB, and

in this region the analytic approximation is less reliable. Close to the bubble wall

and within the bubble, the relevant time-scale is no longer τdiff in eq. (3.10), but
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Figure 3. Charge densities over z. Numerical results are represented by thick lines and analytical

results by thin lines. Left panel: q3 (pink, dot-dashed), ℓ3 (green, dotted), nleft (red, solid). Right

panel: H = H1 +H2 + H̃ (blue, solid), q1 + q2 (orange, dot-dashed).

Γ̄−1 [cf. eqs. (3.19b), (3.22), (3.23)]. Comparison of the numerical values for the

relaxation rates (4.3) to the equilibration rates in table 2 shows that ΓeV ,ΓY ≪
ΓM ,ΓH , such that the analytical approximation is not justified in that regime. In

particular, since the densities q and ℓ have opposite sign [as is generic for meb
> met, cf.

eq. (3.20)], the analytic result for nleft is rather inaccurate. Here and in the following,

we therefore refrain from a direct comparison of the analytical predictions for the

baryon asymmetry to the numerical answer. However, the analytical formulae are still

very useful for understanding the behavior of the numerical solutions qualitatively.

• The results in figure 3 do, indeed, reflect many of these qualitative features. In

particular, in the right panel, we observe that the total first and second generation

LH quark + squark densities are negligible compared to the third generation LH

quark + squark and RH tau + stau densities shown in the left panel. This feature

follows from the approximate vanishing of the third generation contribution to N5,

leading to the near absence of any induced first and second generation densities, as

explained above. In addition, the relative signs of the H, q3 and ℓ3 densities ahead

of the wall follow closely the expectations based on eqs. (3.16) (recall that kB < kT
for our fiducial parameter choice).

Besides, due to the choice of parameters in table 1, the scenario presented in this

section shares the key features with those that are presented in refs. [23, 24]. In order to

discuss these features, it is instructive to consider certain combinations of chemical poten-

tials, that are displayed in figures 4, 5 under the label “tan β = 15”. The following points

are of importance:

• Superequilibrium is maintained on diffusion time-scales Γ−1
diff , as it is exhibited by the

fact that the chemical potentials for particles and their superpartners are identical

sufficiently far away from the bubble wall, cf. figure 4 (“tan β = 15”). This feature is
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crucial for the validity of the analytical approximation in section 3.2. The assumption

of superequilibrium has also been used in deriving the reduced set of Boltzmann

equations, which is presented in ref. [24] and follows from eqs. (2.66).

• In deriving the analytical approximation, it is assumed that the relaxation rates ΓY
are fast compared to the diffusion time-scale Γdiff . This implies that the combina-

tions of chemical potentials that multiply these relaxation rates should vanish. From

figure 5 (“tan β = 15”), we see explicitly that Higgs bosons and Standard Model

fermions satisfy the corresponding equilibrium conditions. We have checked that the

same is also true for the additional supersymmetric particles.

• The fact that Yukawa and triscalar interactions involving (s)bottoms and (s)taus

are in equilibrium leads to an important change in the flavor dynamics ahead of

the bubble wall, that has not been appreciated in the literature [20, 25] before our

resent work [23, 24]. First, since we have a moderately large value of tan β, also

lepton and slepton densities are induced and equilibrate ahead of the bubble wall

and give an important contribution to electroweak baryogenesis. The same is true

for the (s)bottom-particles, as they have larger Yukawa and triscalar interactions than

the (s)tau. Due to the presence of the strong sphaleron, the equilibrium of bottom

Yukawa and triscalar interactions has an additional consequence: The combination

of chemical potentials N5 that multiplies Γss in the Boltzmann equations (2.66) is

vanishing for zero densities of first-generation quarks. Indeed, from figure 3 we see

that no asymmetry in first generation quarks is diffusing ahead of the bubble wall.

4.2 Dependence on tan β

We now take the same parameters as given in table 1 for our example point, but consider

values for tan β ∈ [1.5; 20]. The effect of this on the resulting baryon asymmetry is displayed

in figure 6, where we display the ratio of YB obtained from the numerical simulations and

the observational value YWMAP
B . We see that YB/Y

WMAP
B increases for smaller values of

tan β. This is because smaller values of tan β imply smaller down-type Yukawa couplings.

Therefore, a smaller lepton density is generated ahead of the wall, as can be seen when

comparing figure 7 to figure 3. Since quark and lepton asymmetries contribute with oppo-

site sign (provided meb
> met, as it is the case here), small values of tan β lead to a weaker

cancellation in the left-handed fermion density and therefore a larger baryon asymmetry.

Besides, figure 5 (“tan β = 1.5”) exhibits that for tanβ = 1.5, neither the interactions

mediated by yb nor yτ maintain equilibrium. However, even for values of tan β close the

lower bound that is theoretically allowed, a non-negligible density in b-quarks is produced.

Apparently, the analytical approximation is only reliable for tan β >
∼ 15, when all third

generation Yukawa interactions are in equilibrium on diffusion time-scales. For tan β <
∼ 15,

the interactions mediated by yτ are out of equilibrium on diffusion time-scales, and for

tan β <
∼ 5 the same is true for the interactions mediated by yb. Yet, non-negligible densities

of down-type fermions can occur in general ahead of the bubble wall. We also note that since

for tanβ = 1.5, bottom (s)quarks do not equilibrate ahead of the wall, a non-negligible
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Figure 4. Chemical potentials over z illustrating supergauge-equilibrium. Key: µH1
(pink,

dotted), µH2
(green, dashed), µ eH

(red, solid), µq,ℓ,t,b,τ (red, solid), µ
eq,eℓ,et,eb,eτ

(pink, dotted).
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Figure 5. Chemical potentials over z, illustrating Yukawa-equilibrium. The key is µt−µq, µq−µb,
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Figure 6. BAU over tanβ taking account of all species (blue, thick, solid) and in the hypothetical

cases where lepton densities are not taken into account (red, thick, dotted), where superequilibrium

is enforced (yellow, thin, solid), where supergauge interactions are not taken into account (green,

thin, dotred).
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Figure 7. Charge densities over z, at the fiducial point but with tanβ = 1.5. Left panel: q3 (pink,

dot-dashed), ℓ3 (green, dotted), nleft (red, solid). Right panel: H = H1 + H2 + H̃ (blue, solid),

q1 + q2 (orange, dot-dashed).

density of first-generation quarks is generated, cf. figure 7. This density of left-handed

quarks of the first two generations is opposite to the third generation density, and it has

therefore the effect of suppressing the baryon asymmetry (cf. the graph without taking

account of leptons in figure 6). For large yb, the equilibrium of axial charges that is

maintained by the strong sphaleron is satisfied by the relation µb + µt − µq = 0 and

µq1,2 = 0 [23, 24], whereas for negligible yb, one finds Q1,2 = 2(Q + T ) (where Q and T

are of opposite sign and |T | > |Q|), hence µq and µq1,2 being opposite [20, 25]. Note that

the analytic formulae presented in refs. [20, 25] are not applicable for tan β = 1.5, since

even though bottom quarks do not completlely equilibrate, a sizeable density of them is

yet present ahead of the wall.

Comparison of the graphs with and without leptonic densities taken into account in

figure 6, we also observe that for values as small as tan β = 1.5, there is still a sizable

leptonic contribution to nleft. We also see that fast interactions mediated by Binos and

Winos still maintain superequilibrium ahead of the bubble wall, as exhibited in by the

small tan β region shown in figure 4 (“tan β = 1.5”).

We now investigate the impact of the finite rate of supergauge interactions. For that

purpose, in figure 6, also the results of a simulation where superequilibrium is enforced

(leading to µx = µex everywhere) are displayed. The corresponding plots of the chemical

potentials can be seen in figure 8 (ΓeV → ∞). At large tan β, compared to the case with

finite supergauge interactions [figure 4 (tan β = 15)], µℓ is enhanced, since it adapts to

some extent to µeℓ
[cf. figure 4 (tan β = 15)]. On the other hand, since q̃ is superheavy (i.e.

the density of q̃ is very small), there is no corresponding enhancement of µq. In addition,

imposing superequilibrium slightly favors the production of leptons close to the bubble

wall due to the summation over the various supersymmetric production channels, whereas

the quark production rate is already comparably large. The combination of these effects

leads to an enhancement of the chiral lepton asymmetry which in turn suppresses YB. For

small tan β the situation is more complicated, since now also first generation quarks play

a role. Since for finite supergauge interaction rates superequilibrium is still violated to
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Figure 8. Chemical potentials over z illustrating supergauge-(non-)equilibrium for the case when

supergauge interactions are infinitely slow and infinitely fast, respectively. Key: µH1
(pink, dotted),

µH2
(green, dashed), µ eH

(red, solid), µq,ℓ,t,b,τ (red, solid), µ
eq,eℓ,et,eb,eτ

(pink, dotted).

some extent close to the bubble wall, the apparent agreement of the curves with finite and

infinite supergauge interaction rates in figure 6 for small tan β is accidental. Note also that

for large tanβ, since the contributions of ℓ and q to nleft have opposite sign, the inaccuracy

incurred by assuming finite supergauge interactions is substantial, up to the extent that

the predicted value of YB can flip sign.

4.3 Absence of supergauge interactions

We now investigate in more detail how superequilibrium can be maintained even in absence

of supergauge interactions, as discussed in section 3.1. We first note that since we have

taken its mass to be 2TeV, the interactions of the gluino are suppressed to an extent that
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Figure 9. Charge densities over z, at the fiducial point but without supergauge interactions. Left

panel: q3 (pink, dot-dashed), ℓ3 (green, dotted), nleft (red, solid). Right panel: H = H1 +H2 + H̃

(blue, solid), q1 + q2 (orange, dot-dashed).

they are negligible. Now, we set in addition all interactions ΓeV
appearing in the Boltzmann

equations (2.66) to zero. While this procedure could also be mimicked by taking the Bino

and Wino masses to be very heavy, we note that for electroweak baryogenesis within the

MSSM, it is at least required that either M1 ≃ µ or M2 ≃ µ, in order to have resonant

CP -violation and to produce a large enough baryon asymmetry. Therefore, the limit taken

in this section may be considered as a theoretical exercise. On the other hand, it may be

conceivable that M2 ≫ 1TeV and M1 ≃ µ, but also µ ≃ M1 ≃ met,eb,eτ
. In such a case,

three-body interactions between the Higgsino and right handed fermions are kinematically

not allowed at zero temperature. Besides, if the CP -violating source in supersymmetric

scenarios different from the MSSM is not originating from Higgsino-gaugino mixing, there

may be no obstacle for successful EWB with heavy gauginos.

For the purposes of this example, we again take the parameters from table 1, but we

set Meℓ
= 100GeV. For which species superequilibrium is maintained and for which it is

broken can now be inferred from figure 4 (ΓeV
= 0; Meℓ

= 100GeV): while {q, q̃} and {t, t̃}
do not satisfy superequilibrium, {ℓ, ℓ̃} and {τ, τ̃} do.

To give an explanation of these observations, we first note that since q̃ is superheavy,

the chain of equilibrium conditions (3.11) is broken. To see this, we note that µeq is sizeable,

even far ahead of the bubble wall. However, the number density q̃ is small, since we have

taken the left-handed squark to be superheavy, meq = 2TeV. This implies that for example

Γeq,et,H1

Y /ket ≪ Γdiff and Γeq,et,H1

Y /kH1 ≪ Γdiff . Therefore, a sizable value of µeq does not need

to enforce a large density of H1, for the simple reason that the physical density q̃ is small.

In figure 5 (ΓeV = 0; Meℓ
= 100GeV) it is exhibited, that even though superequilibrium is

violated, Yukawa equilibrium is still intact for Standard Model fermions and Higgs bosons

on diffusion time-scales.

In contrast, in the down-type sector, b̃, τ̃ and ℓ̃ are not heavy compared to T , such

that these particles can mediate the equilibration of H2. Consequently, superequilibrium

is maintained here on diffusion time-scales according to the argument given in section 3.1.

In figure 6 (green dashed curve), we also show a simulation for the parameter set as in
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table 1 (but now again with Meℓ
= 2TeV), but with all supergauge interaction rates set to

zero. The profiles of chemical potentials are displayed in figure 8 (ΓeV
→ 0; Mel

= 2TeV). We

find that YB is enhanced when compared to the cases with finite or infinite ΓeV
. Comparing

to the plots in figure 8 (ΓeV → ∞), we see that in the absence of supergauge interactions

due to the q̃ and ℓ̃ bottlenecks, superequilibrium is broken in both the up and the down

type sector. In addition, we observe:

• The signs of the t and τ chemical potential are now reversed.

• The magnitudes of the t, b, and ℓ densities are reduced.

• The magnitudes of the H1,2 are significantly suppressed.

• The magntiude of the q density increases.

On general grounds, the absence of superequilibrium implies a degrading of the overall

efficiency with which H̃ density (induced by the CP-violating source) is transferred into

the SM fermion densities. At the same time, the detailed balance between these densities

and their net effect on YB change substantially. Without a robust analytic framework

for treating this case, we can only speculate on the reasons why these changes result in

an increase in YB . Nonetheless, it is clear that the complete decoupling of supergauge

interactions from the transport dynamics can have a substantial impact on the predicted

baryon asymmetry. This siutation may be particularly relevant to extensions of the MSSM

that can accommodate sizable CP-violating sources and heavy gauginos.

5 Conclusions

In this work, we have generalized existing approaches to EWB to account for finite super-

gauge interaction rates. We have developed numerical solutions to the resulting Boltzmann

equations that describe the diffusion processes. For particular illustrative points in param-

eter space, we have presented numerical solutions. When superequilibrium holds and all

Yukawa interactions fully equilibrate, these examples agree with results published ear-

lier [23, 24]. In turn, in the absence of superequilibrium or when down-type Yukawa inter-

actions only partially equilibrate, our solutions show sizable deviations from earlier results.

Regarding the consequences of finite supergauge interactions for supersymmetric EWB,

our conclusions are as follows:

• In models for EWB with light gauginos (e.g. with masses not much heavier than T ),

such as the MSSM with a Higgsino-gaugino CP violating source, superequilibrium is

a robust assumption ahead of the bubble wall.

• In models with heavy gauginos — such as extensions of the MSSM that do not re-

quire light gauginos for the CP-violating sources — superequilibrium may be restored

through the network of Yukawa and triscalar interactions. However, this chain of re-

actions may be broken when one of the superpartners becomes heavy compared to

the temperature, thereby leading to a bottleneck. We have presented an illustrative
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example of this situation, where in particular the up-(s)quark sector violates su-

perequilibrium, whereas superequilibrium is maintained for down-type (s)quark and

(s)leptons, cf. figure 4 (ΓeV
= 0; Meℓ

= 100GeV).

• More generally, the assumption of exact superequilibrium or the neglect of supergauge

interactions may lead to significant errors in the prediction of YB , as illustrated,

respectively, by the yellow and green curves in figure 4. In the former case, which

may apply in models with heavy gauginos, the assumption of superequilibrium may

lead to larger left-handed particle densities than actually occur as one forces them

by hand to match the corresponding sparticle densities. As indicated by the yellow

curve of figure 4, the effect of this error is amplified because the LH squark densities

are small, the LH slepton densities are relatively large, and the corresponding particle

densities contribute to nleft with opposite sign. As a result, the enhanced negative

lepton contribution suppresses the baryon asymmetry. The green curve illustrates the

converse dynamics, wherein the neglect of supergauge interactions leads to a lepton

contribution that is smaller in magnitude with a correspondingly larger YB.

• When met < meb
(as it is typically the case in the MSSM with a strong first order

phase transition), the leptonic contribution to nleft is opposite in sign to the one from

quarks. The leptonic contribution is suppressed for small values of tanβ, but yet

needs to be taken into account for values as small as tanβ = 1.5 (cf. figure 6). In

order to obtain a large asymmetry in the MSSM, small values of tan β are therefore

needed from the solution of diffusion equations. This points into the same direction

(but it is a different effect) as the suppression of the CP -violating source for large

values of tan β [37, 53]. Note that we have not taken the impact of tan β on the

CP -violating source into account in this work, in order to disentangle this effect from

the diffusion solutions. However, large values of tan β are yet interesting for EWB

in the (M)SSM, since the Bino phase can be of order one from present EDM limits,

which allows for a value of YB in that region of paramater space [42, 43].

From our results, we can draw the following conclusions regarding the relying on nu-

merical solutions to the diffusion equations when one is interested in quantitatively reliable

predictions for YB:

• The numerical solutions are accurate close to the bubble wall and within the bubble,

where the analytic description is not under control. This may have a sizable impact

on the result for the BAU, which is obtained from integrating over nleft. Even in the

presence of gauginos that are not heavy compared to the temperature, it is advisable

not to impose superequilibrium, as it is usually broken close to the bubble wall. This

is of particular importance when particular densities that contribute to nleft cancel,

as it is often the case.

• For tanβ <
∼ 15, τ -Yukawa couplings or both bottom- and τ -couplings equilibrate

incompletely, but there is always a non-negligible density of b and τ . Since there is

no analytical method yet in order to describe this partial equilibration, the numerical
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solution is necessary for predictions in this parametric region, which is of particular

interest for EWB in the MSSM.

In closing, we emphasize that our conclusions apply to any scenario of supersymmetric

EWB, beyond the MSSM. Our discussion has been nearly independent of the exact nature

of the CP -violating source, which may arise from Higgsinos, squarks, or an extended sector

not present in the MSSM. What is certain, however, is that in order for EWB to work,

CP -violation must be communicated to the left-handed matter fermion sector, which in

general will give rise to CP -violating asymmetries for squarks, quarks, sleptons and leptons

of various flavors through supergauge, Yukawa, triscalar and strong sphaleron processes.

The complete spectrum of gauginos, squarks and sleptons as well as the value of tan β

are relevant for the precise determination of the baryon asymmetry in all supersymmetric

EWB scenarios.
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A Numerical methods

We have developed two independent numerical codes to solve the system of Boltzmann

equations. The first method, a modified version of the Euler method, is best illustrated for

the differential equation

y′′(z) + a(z) y′(z) + b(z) y(z) = s(z) , (A.1)

where a(z), b(z) ≃ constant and s(z) ≃ 0 far enough away from z = 0, say, for z ≤ z1 < 0

and z ≥ z2 > 0. We exploit the fact that eq. (A.1) is homogenous and exactly solvable for

z ≤ z1 and z ≥ z2. Therefore, we can write

y(z) =

{
Aeλ−z z ≤ z1
Be−λ+z z ≥ z2

(A.2)

where λ± > 0. Because a, b are known functions, λ± are known as well; however, A,B

are unknown coefficients. The characteristic equation resulting from eq. (A.1) permits

additional roots, which lead to solutions with diverge at z → ±∞; we implement the

boundary conditions that

lim
z→±∞

y(z) → 0 (A.3)

by discarding these solutions. The next step is to use the Euler method to determine y(z)

in the interpolating region where z1 < z < z2. We discretize this region into N steps with

length ∆. We begin with

y(z1) = Aeλ−z1 (A.4)
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y′(z1) = Aλ−e
λ−z1 (A.5)

y′′(z1) = Aλ2
−e

λ−z1 ; (A.6)

then we iterate forward:

y(z1 + ∆) = y(z1) + y′(z1)∆ + . . . (A.7)

y′(z1 + ∆) = y′(z1) + y′′(z1)∆ + . . . (A.8)

y′′(z1 + ∆) = −a(z1 + ∆) y′(z1 + ∆) − b(z1 + ∆) y(z1 + ∆) + s(z1 + ∆) , (A.9)

where the “. . . ” denotes the possibility of including higher order terms if needed. Ulti-

mately, after iterating from z1 to z1 +N∆ = z2, we obtain

y(z2) = f1(λ−, z1)A (A.10)

y′(z2) = f2(λ−, z1)A , (A.11)

where f1,2 are simply numbers (which depend on λ− and z1). Finally, we merely have to

solve the equations

y(z2) = f1(λ−, z1)A = Be−λ+z2 (A.12)

y′(z2) = f2(λ−, z1)A = Bλ+e
−λ+z2 (A.13)

to determine the unknown coefficients A and B. The application to the system of coupled

densities (2.66a)–(2.66r) follows by generalizing eq. (A.1) to a matrix equation for the

vector of densities y = (tR, t̃R, . . .) and performing some diagonization gymnastics.

The second numerical way we employ to solve the diffusion equations is a relaxation

method, see e.g. [55]. We decompose the N diffusion equations into 2N first order differ-

ential equations

y′i(z) + γij(z)yj(z) = si(z) , (A.14)

where γij(z) depends on the interaction rates, the wall velocity and the diffusion constants

and si(z) on the source. Among the yi, N components represent the charge densities and

N the derivatives of these densities with respect to z.

Then, we discretize (A.14) for M interior points as

Eki = yki −yk−1
i +(zk−zk−1)

[
γij

(
zk + zk−1

2

)
ykj + yk−1

j

2
− si

(
zk + zk−1

2

)]
= 0 , (A.15)

where zk = zmin + (zmax − zmin)k/M . Two additional sets of equations at the exterior

points zmin ≪ 0 and zmax ≫ 0 follow from the boundary conditions. Here, we impose that

the charge densities are vanishing far away from the wall, that means for some pair of large

negative and positive values of zmin and zmax.

We start with a initial guess yki = 0 for all k and i. The yki = 0 are then updated by

solving the linearized approximation to (A.15)

Eki (y
k +∆yk, yk−1 +∆yk−1) ≈ Eki (y

k, yk−1)+
∂Eki (y

k, yk−1)

∂yk−1
j

∆yk−1
j +

∂Eki (y
k, yk)

∂ykj
∆ykj = 0

(A.16)
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subsequently for ∆yk−1 and ∆yk. An improved approximation to the solution is then given

by yk → yk + a∆yk, where a is a positive constant of order one, to be chosen such that

fast convergence is achieved. For the present problem, a relative accuracy of one part in

1010 is typically attained after two or three iterations.
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